$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A coupled Integral Transform Method - Finite Element Method approach to model the Soil Structure Interaction of finite (3D) and length invariant (2.5D) systems

Journal of sound and vibration, v.482, 2020년, pp.115443 -   

Freisinger, J. (Corresponding author.) ,  Hackenberg, M. ,  Müller, G.

Abstract AI-Helper 아이콘AI-Helper

Abstract The prediction of vibrations in an unbounded medium and their interaction with structures on the ground surface or within the soil requires adequate approaches. Therefore the numerical methods addressing the dynamic Soil Structure Interaction (SSI) have to account for both, the infinite ex...

주제어

참고문헌 (45)

  1. Int. J. Numer. Methods Eng. Bettess 11 53 1977 10.1002/nme.1620110107 Infinite elements 

  2. Int. J. Numer. Methods Eng. Zienkiewicz 19 393 1983 10.1002/nme.1620190307 A novel boundary infinite element 

  3. Engquist vol. 74 1765 1977 Absorbing boundary conditions for numerical simulation of waves 

  4. J. Comput. Phys. Givoli 94 1 1991 10.1016/0021-9991(91)90135-8 Non-reflecting boundary conditions 

  5. Comput. Methods Appl. Mech. Eng. Baffet 241244 20 2012 10.1016/j.cma.2012.05.007 Long-time stable high-order absorbing boundary conditions for elastodynamics 

  6. J. Comput. Phys. Berenger 114 185 1994 10.1006/jcph.1994.1159 A perfectly matched layer for the absorption of electromagnetic waves 

  7. Comput. Methods Appl. Mech. Eng. Basu 192 1337 2003 10.1016/S0045-7825(02)00642-4 Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation 

  8. Int. J. Numer. Methods Eng. Franois 90 819 2012 10.1002/nme.3344 A two-and-a-half-dimensional displacement-based PML for elastodynamic wave propagation 

  9. Soil Dynam. Earthq. Eng. Fontara 114 625 2018 10.1016/j.soildyn.2018.06.026 Finite element implementation of efficient absorbing layers for time harmonic elastodynamics of unbounded domains 

  10. Wolf 2003 The Scaled Boundary Finite Element Method 

  11. J. Sci. Comput. Schauer 52 446 2012 10.1007/s10915-011-9551-x Parallel computation of 3-D Soil-Structure Interaction in time domain with a coupled FEM/SBFEM approach 

  12. Soil Dynam. Earthq. Eng. Schauer 121 466 2019 10.1016/j.soildyn.2019.01.033 A coupled FEM-SBFEM approach for soil-structure-interaction analysis using non-matching meshes at the near-field far-field interface 

  13. Waas 1972 Earth Vibration Effects and Abatement for Military Facilities. Report 3. Analysis Method for Footing Vibrations through Layered Media 

  14. Park 2002 Wave Motion in Finite and Infinite Media Using the Thin-Layer Method 

  15. Int. J. Numer. Methods Eng. Kausel 37 927 1994 10.1002/nme.1620370604 Thin-layer method: formulation in the time domain 

  16. J. Sound Vib. Sheng 293 575 2006 10.1016/j.jsv.2005.08.040 Prediction of ground vibration from trains using the wavenumber finite and boundary element methods 

  17. J. Sound Vib. Andersen 293 611 2006 10.1016/j.jsv.2005.08.044 Coupled boundary and finite element analysis of vibration from railway tunnels - a comparison of two- and three-dimensional models 

  18. Comput. Mech. Clouteau 25 567 2000 10.1007/s004660050504 Periodic BEM and FEM-BEM coupling 

  19. J. Sound Vib. Clouteau 283 173 2005 10.1016/j.jsv.2004.04.010 Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium 

  20. J. Sound Vib. Coulier 333 2520 2014 10.1016/j.jsv.2014.01.017 The influence of source-receiver interaction on the numerical prediction of railway induced vibrations 

  21. J. Sound Vib. Kuo 442 459 2019 10.1016/j.jsv.2018.10.048 The coupling loss of a building subject to railway induced vibrations: numerical modelling and experimental measurements 

  22. J. Sound Vib. Degrande 293 645 2006 10.1016/j.jsv.2005.12.023 A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation 

  23. J. Sound Vib. Lombaert 297 512 2006 10.1016/j.jsv.2006.03.048 The experimental validation of a numerical model for the prediction of railway induced vibrations 

  24. J. Sound Vib. Gupta 329 1101 2010 10.1016/j.jsv.2009.10.037 Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach 

  25. Soil Dynam. Earthq. Eng. Thompson 79 89 2015 10.1016/j.soildyn.2015.09.005 Mitigation of railway-induced vibration by using subgrade stiffening 

  26. J. Sound Vib. Forrest 294 678 2006 10.1016/j.jsv.2005.12.032 A three-dimensional tunnel model for calculation of train-induced ground vibration 

  27. Soil Dynam. Earthq. Eng. Gupta 27 608 2007 10.1016/j.soildyn.2006.12.007 A comparison of two numerical models for the prediction of vibrations from underground railway traffic 

  28. J. Sound Vib. Hussein 297 37 2006 10.1016/j.jsv.2006.03.026 Modelling of floating-slab tracks with continuous slabs under oscillating moving loads 

  29. Hussein 136 2008 Noise and Vibration Mitigation for Rail Transportation Systems, Volume 99 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design Using the PiP model for fast calculation of vibration from a railway tunnel in a multi-layered half-space 

  30. J. Eng. Mech. Jones 137 887 2011 10.1061/(ASCE)EM.1943-7889.0000292 Effect of inclined soil layers on surface vibration from underground railways using the thin-layer method 

  31. Eringen 1975 

  32. Mller 1989 Ein Verfahren zur Erfassung der Fundament-Boden Wechselwirkung unter Einwirkung periodischer Lasten 

  33. Zirwas 1996 Ein hybrides Verfahren zur Behandlung der Bauwerk-Bodenwechselwirkung mit analytischen Integraltransformationen und numerischen Anstzen 

  34. Rastandi 2003 Modelization of Dynamic Soil-Structure Interaction Using Integral Transform-Finite Element Coupling 

  35. Mller 2007 Dreidimensionale dynamische Tunnel-Halbraum-Interaktion: Ein Verfahren auf der Grundlage einer Kopplung der Integraltransformationsmethode mit der Finite-Elemente-Methode 

  36. Frhe 2010 berlagerung von Grundlsungen in der Elastodynamik zur Behandlung der dynamischen Tunnel-Boden-Bauwerk-Interaktion 

  37. J. Sound Vib. Mller 310 558 2008 10.1016/j.jsv.2007.10.042 Nonlinear interaction between a moving vehicle and a plate elastically mounted on a tunnel 

  38. Hackenberg 2016 A Coupled Integral Transform Method - Finite Element Method Approach to Model the Soil-Structure-Interaction 

  39. Acta Mech. Long 3 371 1967 10.1007/BF01181496 On the completeness of the Lam potentials 

  40. Sommerfeld 1964 Partial Differential Equations in Physics 

  41. Priestley vol. 1 1981 

  42. Dolling 1969 Die Abschirmung von Erschtterungen durch Bodenschlitze 

  43. J. Eng. Mech. Div. Whittaker 108 133 1982 10.1061/JMCEA3.0002790 Dynamic response of plate on elastic half-space 

  44. Earthq. Eng. Struct. Dynam. Wong 4 579 1976 10.1002/eqe.4290040606 Dynamic response of rigid foundations of arbitrary shape 

  45. Taddei 2015 Numerical Investigation of Soil-Structure Interaction for Onshore Wind Turbines Grounded on a Layered Soil 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로