$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

신경망 기반 추천 모델의 성능향상을 위한 정보의 융합

Data Fusion for performance Enhancement of Neural Network Based Recommendation Models

초록

협력적 추천은 데이터의 범위성, 초기 사용자, 희소성, 회색양의 문제를 안고 있다. 이를 해결하기 위해 기존 연구는 내용기반 추천이나 인구통계학적 추천을 협력적 추천과 통합하려는 연구가 진행되어 왔다. 본 논문에서는 추천 시스템의 성능 향상을 위해 이질적인 데이터의 통합에 효과적인 신경망을 사용하여 다양한 종류의 정보 융합을 제안한다 신경망을 사용한 추천 모델은 사용자들 또는 항목들 간의 선호관계를 학습할 수 있고, 이질적인 데이터의 통합이 용이한 신경망의 장점을 이용하면 항목들에 대한 내용과 사용자들의 인구통계학적인 정보, 그리고 그 외적인 관련정보를 쉽게 융합할 수 있다. 또한, 데이터 융합을 통하여 희소 데이터 문제와 초기 사용자 문제를 해결할 수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일