$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

임베딩 기법과 딥러닝 기법을 이용한 영화 추천 시스템 설계

A Design for Movie Recommender System using Embedding and Deep-Learning Technique

초록

일반적으로 협업 핑터랭 기반의 추천 시스템에서는 사용자와 아이템 간의 상호 작용이 희박하게 나타나는 문제 때문에 성능상의 한계점을 가지고 있다. 이 문제는 전통적으로 사용되었던 기계 학습의 입력 특성들이 의미적으로 관계가 없도록, 독립적으로 표현하기 때문이다. 본 논문에서는 임베딩 기법을 이용하여 서로 독립적으로 표현되었던 아이템들을 의미적으로 표현되는 벡터로 바꾸고, 최근 협업 필터링 기반의 추천 시스템으로 많이 사용되는 RNN을 사용하여 모델링한 시스템을 제안한다. 제안된 모델은 최근에 발표된 추천시스템들과 동등하거나 그 이상의 성능을 보일 것으로 기대된다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일