$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 피동 접사를 이용한 동사패턴의 확장
Extension of Verb Patterns Using Passive Affixes 원문보기

한국정보처리학회 2002년도 추계학술발표논문집 (상), 2002 Nov. 15, 2002년, pp.619 - 622  

김창현 (한국전자통신연구원) ,  양성일 (한국전자통신연구원) ,  최승권 (한국전자통신연구원)

초록

동사패턴은 원시 언어 분석을 위해 동사와 동사의 격성분 및 의미제약을 기술하고, 목적언어 생성을 위해 동사의 대역어 및 격성분들의 생성 위치정보를 기술한다. 이러한 동사패턴의 구축은 시간적, 경제적 부담이 큰 작업이며, 동사패턴 구축의 자동화 혹은 반자동화에 대한 요구는 크다. 본 논문에서는 서술성 명사와 결합하여 동사를 생성하는 접사들인 '-하-, -되-, -받-, -당하-, -드리-'에 대해, 이들 간의 상호 변환 규칙을 이용하여 수동으로 구축된 동사패턴으로부터 새로운 동사패턴을 자동으로 생성한다. 변환 규칙에서는 명사 어휘별 접사 분포 정보와 함께, 접사와 결합된 파생동사의 구문정보가 요구된다. 그러나, 기존의 사전에는 서술성 명사들의 '-하다, -되다' 분포 및 구문정보만이 기술되어 있고, '-받다, -당하다, -드리다'에 대해서는 기술되어 있지 않다. 본 논문에서는 서술성 명사들의 접사 분포 정보 및 구문정보를 파악하고, 이들 간의 상호 변환 규칙을 도출하여 새로운 동사패턴을 생성화는 2단계 작업을 수행한다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 2. 동사패턴 생성 후보들에 대해 '-되」나 '-하 ■■'를 가지지 않은 경우는 후보에서 제외한다.
본문요약 정보가 도움이 되었나요?

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로