$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Buried Channel PMOS에서 이온 주입된 $BF_2$ 열처리 거동 원문보기

한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집, 2012 Feb. 08, 2012년, pp.374 - 374  

허태훈 (홍익대학교 신소재공학과) ,  노재상 (홍익대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

반도체 소자의 크기가 100 nm 이하로 감소되면 통상적인 이온 주입 조건인 이온 에너지, 조사량 및 이온 주입 각도뿐만 아니라 Dose Rate 및 모재 온도가 Dopant Profile을 조절하는 데에 있어서 매우 중요한 인자로 작용한다. 본 연구에서는 Ribbon-beam 및 Spot-beam을 사용하여 활성화 열처리 후 Dopant Profile을 분석하였다. 이온 주입은 모든 시편에서 $BF_2$를 가속 에너지 10 keV 및 조사량 $2{\times}10^{15}/cm^2$로 고정하였다. 이온 주입 후 도펀트 활성화는 100% 질소 분위기 하에서 $850^{\circ}C$-30s 조건으로 RTA 열처리를 수행하였다. Boron 및 Fluorine의 Profile은 SIMS 분석을 통하여 구하였다. Spot-beam은 Ribbon-Beam에 비하여 Dose Rate 및 Cooling Efficiency가 높기 때문에 이온 주입 후 더욱 많은 양의 Primary-defect를 발생시키고 이에 따라 두꺼운 비정질 충을 형성한다. $BF_2$ 이온 주입 된 시편에서 B 및 F의 농도 Peak-height는 a/c 계면에 위치하는 것을 관찰하였다. 또한 B 및 F의 농도 Peak-height는 Silicon 모재의 온도가 증가할수록 증가하는 것을 관찰하였다. Silicon 모재의 온도가 증가함에 따라 Active-area의 면저항이 변화하지 않는 상태에서 Vt (Threshold Voltage)가 급격히 감소함을 관찰 하였다. 비정칠 층의 두께가 증가할수록 a/c 계면 하단에 잔존하는 Residual-defect의 양이 감소하고 이는 측면확산을 감소시키는 역할을 한다는 것이 관찰되었다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Spot-beam은 Ribbon-Beam에 비하여 Dose Rate 및 Cooling Efficiency가 높기 때문에 이온 주입 후 더욱 많은 양의 Primary-defect를 발생시키고 이에 따라 두꺼운 비정질 충을 형성한다. BF2 이온 주입 된 시편에서 B 및 F의 농도 Peak-height는 a/c 계면에 위치하는 것을 관찰하였다. 또한 B 및 F의 농도 Peak-height는 Silicon 모재의 온도가 증가할수록 증가하는 것을 관찰하였다.
  • 이온 주입 후 도펀트 활성화는 100% 질소 분위기 하에서 850℃-30s 조건으로 RTA 열처리를 수행하였다. Boron 및 Fluorine의 Profile은 SIMS 분석을 통하여 구하였다. Spot-beam은 Ribbon-Beam에 비하여 Dose Rate 및 Cooling Efficiency가 높기 때문에 이온 주입 후 더욱 많은 양의 Primary-defect를 발생시키고 이에 따라 두꺼운 비정질 충을 형성한다.
  • p>반도체 소자의 크기가 100 nm 이하로 감소되면 통상적인 이온 주입 조건인 이온 에너지, 조사량 및 이온 주입 각도뿐만 아니라 Dose Rate 및 모재 온도가 Dopant Profile을 조절하는 데에 있어서 매우 중요한 인자로 작용한다. 본 연구에서는 Ribbon-beam 및 Spot-beam을 사용하여 활성화 열처리 후 Dopant Profile을 분석하였다. 이온 주입은 모든 시편에서 BF2를 가속 에너지 10 keV 및 조사량 2×1015/cm2로 고정하였다.
  • 이온 주입은 모든 시편에서 BF2를 가속 에너지 10 keV 및 조사량 2×1015/cm2로 고정하였다. 이온 주입 후 도펀트 활성화는 100% 질소 분위기 하에서 850℃-30s 조건으로 RTA 열처리를 수행하였다. Boron 및 Fluorine의 Profile은 SIMS 분석을 통하여 구하였다.
본문요약 정보가 도움이 되었나요?

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로