$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] CNN-LSTM 신경망을 이용한 발화 분석 모델
Utterance Intention Analysis Using CNN-LSTM Neural Network 원문보기

한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회, 2017 Oct. 13, 2017년, pp.122 - 124  

김민경 (강원대학교 컴퓨터정보통신공학과) ,  김학수 (강원대학교 컴퓨터정보통신공학과)

초록
AI-Helper 아이콘AI-Helper

대화시스템이 적절한 응답을 제시해 주기 위해서는 사용자의 의도를 분석하는 것은 중요한 일이다. 사용자의 의도는 도메인에 독립적인 화행과 도메인에 종속적인 서술자의 쌍으로 나타낼 수 있다. 사용자 의도를 정확하게 분석하기 위해서는 화행과 서술자를 동시에 분석하고 대화의 문맥을 고려해야 한다. 본 논문에서 제안하는 모델은 합성곱 신경망에서 공유 계층을 이용하여 화행과 서술자간 상호작용이 반영된 발화 임베딩 모델을 학습한다. 그리고 순환 신경망을 통해 대화의 문맥을 반영하여 발화를 분석한다. 실험 결과 제안 모델이 이전 모델들 보다 높은 성능 (F1-measure로 화행에 대해 0.973, 서술자 0.919)을 보였다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • [5]가 제안한 모델은 화행 분류 모델과 서술자 분류 모델로 나뉘며 학습동안 한 모델의 출력 값을 다른 모델의 입력 자질로 사용한다. 본 논문에서는 합성곱 신경망(Convolutional Neural Network)[6]와 LSTM 순환 신경망(Long Short-Term Memory Recurrent Neural Network)[7]을 이용하여 화행과 서술자를 동시에 분석하는 발화 분석 모델을 제안한다. 제안된 모델은 합성곱 신경망을 기반으로 한 새로운 발화 임베딩 방법을 이용하여 화행과 서술자간의 상호작용이 가능하게 한다.
  • 본 논문에서는 발화를 분석하기 위해 합성곱 신경망과 LSTM 순환 신경망을 결합한 모델을 제안하였다. 합성곱 신경망을 통해 화행과 서술자간의 상호작용이 반영되게 발화를 임베딩하고 LSTM 순환 신경망을 이용하여 대화의 문맥을 반영하였다.
본문요약 정보가 도움이 되었나요?

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로