$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

기상 빅데이터와 딥러닝 기술을 활용한 비정상성 강우량 모의 기법 개발

Development of Non-stationary Rainfall Simulation Method using Deep-learning Technique and Bigdata

초록

기후변화의 영향으로 국지적 규모의 홍수, 가뭄 등의 피해 규모가 증가하고 있으며, 복사에너지 변화에 기인한 전지구적 대류활동의 변화는 단발성 피해에 확산되어 특정 지역의 기후 패턴 변화로 이어질 수 있다. 대류활동의 변화는 국가별 물순환의 변화로 이어질 수 있으며, 이로 인한 수자원의 변동성은 국가적 수자원 이용에 있어 중요한 요소로 작용될 수 있다. 수자원의 중요성으로 인해 국제적인 기관들은 전지구적 대류활동에 기인한 물순환 과정을 파악하고자 노력하였으며, 그 일환으로 GCMs (Global climate modeling) 등과 같은 모형이 개발되었고, 위성을 통한 전지구 강우량 측정망을 구축하였다. 위성을 통한 전구 강우량 자료와 GCMs에서 산출된 대류과정과 연관된 기후변량 자료들은 빅데이터로 구축되어 제한 없이 제공되고 있다. 정상성 강우 모의 기법은 데이터에 한정된 패턴을 반영하는 모형들로서 기후변화로 인한 기후 변동성 증가를 반영하는데 한계가 존재한다. 본 연구에서는 기상 빅데이터 자료를 기반으로 한반도의 강우량과 기상학적 특성을 연관할 수 있는 머신러닝의 일종인 딥러닝 방법을 접목시킨 강우 모의 기법을 적용하였다. 본 연구의 모형은 기후변화로 인한 기상학적 패턴의 변화를 딥러닝 기법을 통해 식별하고 식별된 기상학적 특성에 기반한 한반도의 강우량을 모의할 수 있다. 본 모형은 단기 및 장기 예측 모형과 결합하여 불확실성을 고려한 단/장기 강우량 평가에 활용될 수 있을 것으로 기대된다.

DOI 인용 스타일

"" 핵심어 질의응답