$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Redis 파라미터 분류 및 단계적 베이지안 최적화를 통한 파라미터 튜닝 연구
A Study on Parameter Tuning for Redis via Parameter Classification and Phased Bayesian Optimization 원문보기

한국정보처리학회 2021년도 추계학술발표대회, 2021 Nov. 04, 2021년, pp.476 - 479  

조성운 (동국대학교 통계학과) ,  박상현 (연세대학교 컴퓨터공학과)

초록
AI-Helper 아이콘AI-Helper

DBMS 파라미터 튜닝이란 데이터베이스에서 제공하는 다양한 파라미터의 값을 조율하여, 최적의 성능을 도출하는 과정이다. 데이터베이스 종류에 따라 파라미터 개수가 수십 개에서 수백 개로 다양하며, 각 기능이 모두 다르기 때문에 최적의 조합을 찾는 것은 쉽지 않다. 선행 연구에서는 BO 기법을 사용하여 적절한 파라미터 값을 추출했지만, 파라미터 개수에 비례하여 차원이 커지는 문제가 발생한다. 본 논문에서는 통계적으로 파라미터를 분류하여 탐색 공간을 줄인 다음 단계적으로 BO 를 수행하는 PBO 방식을 제안한다. 파라미터 값을 랜덤하게 할당하여 벤치마킹한 결과값을 군집화한 후, 각 군집별로 파라미터와의 연관성을 분석해 높은 상관관계를 가진 파라미터를 매칭시켜 분류한다. 제안하는 방법론을 검증하기 위하여 8 가지 회귀 모델과의 비교 실험을 통해 제안한 방법론의 우수성을 검증하였다.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로