$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 양전자 단층 촬영 영상을 사용한 악성 흉수 진단을 위한 컨볼루션 신경망 기반 딥러닝 모델의 성능 평가
Performance Evaluation of a Convolutional Neural Network Models for Diagnosing Malignant Pleural Effusion Using Positron Emission Tomography 원문보기

한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호, 2024 Jan. 17, 2024년, pp.17 - 18  

김예지 (한양대학교 공과대학 인공지능학과) ,  이종민 (한양대학교 공과대학 융합전자공학부) ,  유승진 (한양대학교 의과대학 영상의학과) ,  김보근 (한양대학교 의과대학 내과) ,  이현 (한양대학교 의과대학 내과) ,  최윤영 (한양대학교 의과대학 핵의학과) ,  이수진 (한양대학교 의과대학 핵의학과)

초록
AI-Helper 아이콘AI-Helper

악성 흉수의 진단은 세포학적 검사로 암세포를 확인하는 것이 필수적이며 진단율은 50~80%로 나타난다. 양성자 단층 촬영은 비침습적으로 암 병기를 평가하는 유용한 방법이다. 하지만 암이 아닌 다른 원인으로 인한 포도당 대사로 인하여 양전자 단층 촬영만으로 악성 흉수를 진단하는 데 어려움이 있다. 악성 흉수 자동 진단 모델은 암세포를 진단하는데 있어서 보조적인 역할이 가능하다. 이에 따라 본 연구는 컨볼루션 신경망 기반의 딥러닝 모델을 개발하여 악성 흉수 진단 성능을 확인하고 진단의 보조적 목적으로써 딥러닝의 사용 가능성을 확인하고자 하였다. 결과적으로 모델 전반적으로 accuracy 0.7~0.86의 높은 성능을 보였다. 본 연구의 결과를 통해 실제 의료 환경에서 악성 흉수를 진단하는데 딥러닝 모델이 보조적인 역할을 할 수 있을 것으로 기대된다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로