$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 앙상블 기법을 활용한 RNA-Sequencing 데이터의 폐암 예측 연구
A Study on Predicting Lung Cancer Using RNA-Sequencing Data with Ensemble Learning 원문보기

Journal of Korea Artificial Intelligence Association, v.2 no.1, 2024년, pp.7 - 14  

Geon AN (Department of Medical IT, Eulji University) ,  JooYong PARK (Department of Big Data Medical Convergence, Eulji University)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we explore the application of RNA-sequencing data and ensemble machine learning to predict lung cancer and treatment strategies for lung cancer, a leading cause of cancer mortality worldwide. The research utilizes Random Forest, XGBoost, and LightGBM models to analyze gene expression ...

Keyword

표/그림 (3)

참고문헌 (27)

  1. Ali, J., Khan, R., & Ahmad, N. (2012). Random forests and?decision trees. International Journal of Computer Science?Issues, 9(5). Retrieved from?https://www.uetpeshawar.edu.pk/TRP-G/Dr.Nasir-AhmadTRP/Journals/2012/Random%20Forests%20and%20Decision%20Trees.pdf 

  2. Baradaran Rezaei, H., Amjadian, A., Sebt, M. V., et al. (2023). An?ensemble method of the machine learning to prognosticate the?gastric cancer. Annals of Operations Research, 328, 151-192.?https://doi.org/10.1007/s10479-022-04964-1 

  3. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning?Research, 13(Feb), 281-305. Retrieved from?https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf 

  4. BigOmics Analytics. (2023, March 16). What is TPM??Understanding normalization methods for gene expression.?BigOmics Analytics. Retrieved from?https://bigomics.ch/blog/why-how-normalize-rna-seq-data/ 

  5. Boateng, E., & Abaye, D. (2019). A review of the logistic?regression model with emphasis on medical research. Journal?of Data Analysis and Information Processing, 7, 190-207. doi: 10.4236/jdaip.2019.74012. 

  6. Bostanci, E., Kocak, E., Unal, M., Guzel, M. S., Acici, K., &?Asuroglu, T. (2023). Machine learning analysis of RNA-seq?data for diagnostic and prognostic prediction of colon cancer.?Sensors, 23(6), 3080. https://doi.org/10.3390/s23063080 

  7. Brown, K., Filuta, A., Ludwig, M. G., Seuwen, K., & Jaros, J.?(2017). Epithelial Gpr116 regulates pulmonary alveolar?homeostasis via Gq/11 signaling. JCI Insight, 2(11), e89704.?https://doi.org/10.1172/jci.insight.89704 

  8. Czepiel, S. A. (2002). Maximum likelihood estimation of logistic?regression models: Theory and implementation. Available at?czep.net/stat/mlelr.pdf 

  9. Ergin, S., Kherad, N., & Alagoz, M. (2022). RNA sequencing and?its applications in cancer and rare diseases. Molecular Biology?Reports, 49, 2325-2333. https://doi.org/10.1007/s11033-021-06963-0 

  10. Gad, A. A., & Balenga, N. (2020). The emerging role of adhesion?GPCRs in cancer. ACS Pharmacology & Translational?Science. https://doi.org/10.1021/acsptsci.9b00093 

  11. Gohiya, H., Lohiya, H., & Patidar, K. (2018). A survey of XGBoost?system. International Journal of Advanced Technology and?Engineering Research, 8(7). Retrieved from?http://www.ijater.com/Files/aa09b180-add4-4a6d-b234-bc122eb305d4_IJATER_39_07.pdf 

  12. Handoyo, S., Pradianti, N., Nugroho, W. H., & Akri, Y. J. (2022).?A heuristic feature selection in logistic regression modeling?with newton raphson and gradient descent algorithm.?International Journal of Advanced Computer Science and?Applications, 13(3). 

  13. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q.,?& Liu, T.-Y. (2017). LightGBM: A highly efficient gradient?boosting decision tree. Advances in Neural Information?Processing Systems, 30. Retrieved from?https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html 

  14. Li, K., Chen, Y., Sun, R., Yu, B., Li, G., & Jiang, X. (2020).?Exploring potential of different X-ray imaging methods for?early-stage lung cancer detection. Journal of Medical Imaging?and Radiation Sciences, 5(2), 173-183.?https://dx.doi.org/10.1007/s41605-020-00173-1 

  15. Li, W., Yin, Y., Quan, X., & Zhang, H. (2019). Gene expression?value prediction based on XGBoost algorithm. Frontiers in?Genetics. Retrieved from?https://www.frontiersin.org/articles/10.3389/fgene.2019.01077/full 

  16. Louppe, G. (2014). Understanding random forests: From theory to?practice. Cornell University Library. Retrieved from?https://www.researchgate.net/profile/GillesLouppe/publication/264312332_Understanding-RandomForests_From-Theory-toPractice/links/54ae38ea0cf2213c5fe427b7/UnderstandingRandom-Forests-From-Theory-to-Practice.pdf 

  17. Midthun, D. E. (2016). Early detection of lung cancer.?F1000Research, 5, F1000 Faculty Rev-739.?https://doi.org/10.12688/f1000research.7313.1 

  18. Napierala, M. A. (2012). What is the Bonferroni correction?, AAOS?Now, 40. Retrieved from?https://link.gale.com/apps/doc/A288979427/HRCA?uanon~94f28a3d&sidgoogleScholar&xidd9841e38 

  19. Nooreldeen, R., & Bach, H. (2021). Current and future?development in lung cancer diagnosis. International Journal?of Molecular Sciences, 22(16), 8661.?https://doi.org/10.3390/ijms22168661 

  20. Park, S.-K., Kim, S., Lee, G.-Y., Kim, S.-Y., Kim, W., Lee, C.-W.,?Park, J.-L., Choi, C.-H., Kang, S-B., & Kim, T.-O., et al.?(2021). Development of a machine learning model to?distinguish between ulcerative colitis and Crohn's disease?using RNA sequencing data. Diagnostics, 11(12), 2365.?https://doi.org/10.3390/diagnostics11122365 

  21. Piao, Y., Choi, N. H., Li, M., Piao, M., & Ryu, K. H. (2014).?Ensemble method for prediction of prostate cancer from?RNA-Seq data. Science Technology, 51-56. 

  22. Roderburg, C., Loosen, S. H., & Hippe, H. J. (2022). Pulmonary?hypertension is associated with an increased incidence of?cancer diagnoses. Pulmonary Circulation, 12(1), e12000.?https://doi.org/10.1002/pul2.12000 

  23. World Health Organization. (2020). Global Cancer Observatory:?Cancer today. International Agency for Research on Cancer.?Available from?https://gco.iarc.fr/today/data/factsheets/cancers/15-Lungfact-sheet.pdf 

  24. Witten, D., & Tibshirani, R. (2007). A comparison of fold-change?and the t-statistic for microarray data analysis. Analysis, 1776,?58-85. 

  25. Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation?over hold-out validation on colossal datasets for quality?classification. 2016 IEEE 6th International Conference on?Advanced Computing (IACC), 78-83. doi: 10.1109/IACC.2016.25 

  26. Zappa, C., & Mousa, S. A. (2016). Non-small cell lung cancer:?Current treatment and future advances. Translational Lung?Cancer Research, 5(3), 288-300.?https://doi.org/10.21037/tlcr.2016.06.07 

  27. Zhang, L., Geisler, T., Ray, H., & Xie, Y. (2022). Improving logistic?regression on the imbalanced data by a novel penalized log-likelihood function. Journal of Applied Statistics, 49(13),?3257-3277. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로