$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과학자들이 말하는 ‘늙음’의 진짜 원인_1편

2023-03-06

나이는 숫자에 불과한 것만은 아니다. 숫자가 올라갈 때 우리 몸은 노화하고 있다. 비단, 체력이 떨어지고, 주름이 생기고, 피부 탄력이 떨어지는 것만을 의미하지 않는다. 노화에 대한 과학적 정의는 조금 더 매정하다. ‘생리학적으로 온전했던 상태가 점진적으로 망가져 기능에 문제를 일으키고, 죽을 가능성을 높이는 것’으로 정의된다. 과학자들은 눈에 보이는 노화의 기저에 있는 생물학적 노화의 특징들을 찾아내고 있다. 인간을 포함한 다양한 개체, 특히 포유류의 노화에서 나타나는 공통적인 특징들을 정리하면 반대로 노화를 막는 연구도 가능해진다.
생물학 분야 최고 권위의 국제학술지 ‘셀(Cell)’은 2013년 ‘노화의 특징(The Hallmarks of Aging)’이라는 제목의 논문을 발표하며 생물학적 노화의 9가지 특징을 정리했다. 이후 10년간 추가된 연구를 종합하여 지난 1월 ‘노화의 특징: 확장판’을 다시 펴냈다. 여기에는 12개의 특징이 담겼다. 사이언스타임즈는 4편의 기사를 통해 노화의 생물학적 특징을 소개해보고자 한다.

노화를 세포 수준에서 정의하자면, 정상적이지 못한 세포들이 제거되지 않고 비정상적으로 계속 활동하는 현상이다. 세포가 분열할 때 모든 유전정보가 새로운 세포로 전달된다면, 세포의 비정상적인 활동은 나타나지 않는다. 하지만 모든 유전정보를 담은 DNA에 변형이 생기면 세포 손상이 유발된다. 유전체 불안정성, 텔로미어 마모, 후성 유전학적 변화 등 세 가지가 DNA와 관련된 노화의 원인으로 정의된다.
강력한 태양 빛 아래서 서핑을 즐기는 것이 취미이던 일본의 ‘꽃미남’ 배우가 급격히 노화된 모습으로 ‘역변’한 사진을 많이들 본 적 있을 것이다. ‘유전체 불안정성’은 자외선이나 X선, 각종 화합물, 활성산소 때문에 유전체가 손상되는 현상이다. DNA가 손상되면 우리 몸속 단백질이 제대로 만들어지지 않거나, 이상한 단백질(돌연변이)가 만들어진다. 단백질은 호르몬을 만들고, 외부에서 나쁜 물질이 들어왔을 때 이를 퇴치하고, 유전자 손상을 감시하는 역할도 한다. 그리고 유전자의 손상이 감지되면 즉시 DNA 손상을 복구시켜 안정성을 유지하기도 한다.
나이든 생명체의 체세포에는 돌연변이를 비롯한 다양한 형태의 DNA와 염색체 손상이 축적된다. 이러한 손상은 중요한 기능을 하는 유전자나 회로에 문제를 만들어, 세포의 기능에 심각한 장애를 일으킨다. 쥐의 DNA 수리 기능을 망가뜨리면 노화 속도가 증가한다는 연구결과가 있으며, 인간 조로증 환자의 경우 DNA 수리 기작에 문제가 있다는 보고도 있다.
세포가 강력한 자외선에 쏘였다고 하더라도, 정상적인 세포라면 DNA 손상이 복구되기 때문에 유전자 불안정성은 제거된다. 하지만 DNA 손상이 과다하거나, 손상 복구에 관여하는 단백질에 문제가 있다면 변형된 DNA는 그대로 유지되며, 정상적인 세포와는 다른 모습을 보이게 된다. 즉, 유전체 불안정성은 세포의 변형을 유발하는 노화의 근본적인 원인으로 분류된다.

DNA 손상은 나이가 들며 축적되지만, 염색체의 끝 부위인 텔로미어(Telomere)는 특히 손상에 민감하다. DNA가 실이라면, 텔로미어는 신발 끈 끝 부분의 코팅된 부분에 비유할 수 있다. 텔로미어는 세포분열 횟수가 증가(노화)함에 따라 그 길이가 점점 줄어든다. 코팅된 부분이 사라진 신발 끈이 쉽게 풀어지는 것으로 생각하면 쉽다.
텔로미어 마모는 유전체 불안정성보다 노화에 직결된다. 세계 최초로 체세포 복제 방식으로 복제된 동물인 복제 양 돌리가 이를 여실히 보여주는 사례다. 당시 돌리는 6세 정도 된 양의 체세포를 복제해 태어났다. 양의 평균 수명이 12년인 데 반해, 복제는 6년밖에 살지 못했다. 이미 텔로미어 길이가 소진되어있기 때문이다. 이렇게 외부에서 배양된 세포가 제한된 분열 능력을 가지는 현상을 ‘헤이플릭 한계’라고 부른다.
인간과 쥐 모두에서 나이 듦에 따라 텔로미어 길이가 짧아지는 것이 관찰됐다. 이를 역이용해 노화를 늦추는 연구도 진행됐다. 세포에 텔로미어를 유지할 수 있는 효소인 ‘텔로머레이즈’를 외부에서 주입해 발현시키면, 무한한 분열 능력을 갖게 된다.

같은 유전 정보를 가지고 태어난 일란성 쌍둥이라도 나이가 들면서 차이가 나타난다. 단순히 패션이나 머리 스타일이 아니라 뚜렷하게 구분되는 모습의 차이가 생긴다. 이처럼 같은 유전 정보를 가지고 있더라도, 외부 요인에 의해 달라지는 변화를 후성 유전적 변화라고 한다.
다양한 후성 유전적 변화는 전 생애에 걸쳐 모든 세포와 조직에 영향을 미친다. 가령, 섭취한 약은 DNA와 결합하여 작동하는데, 이런 작은 변화가 유전정보가 해석되는 과정에 관여하여 후성 유전적 변화를 유발할 수 있다. 또, 미세먼지 등 환경오염 때문에 후성 유전적 변화가 생기기도 한다. 서로 다른 유전정보를 가진 부부가 함께 생활하면서 닮아가는 것도 후성 유전적 변화의 결과라고 볼 수 있다.
이런 후성 유전적 변화는 세포의 변형을 유도하는데, 이 변형이 세포 노화의 시작이다. 하지만 DNA에 발생하는 돌연변이와 달리 후성 유전적 변화는 되돌릴 수 있다. 후성 유전적 변화를 억제하는 물질을 이용하면 항 노화제를 개발할 수 있다는 의미다. 게다가, 후성 유전적 특징이 세대를 넘어 전달되는 현상도 대표적인 실험동물인 예쁜 꼬마선충을 이용한 연구에서 밝혀졌다. 부모 세대에서 특정 염색질 표지를 조절하면, 그 효과가 자손으로도 이어질 수 있다는 의미다.

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로