최근 반도체 WAFER, LCD 및 PDP, OLED등 크기가 생산성 향상과 판매 원가 절감이라는 시장 요구에 부응하기 위하여 점점 더 대구경화 되어 가는 추세이다. 웨이퍼의 경우 웨이퍼의 사이즈가 8인치에서 12인치(300㎜)로 증대 되었으며 최근 국내 반도체장비기술로드맵(roadmap)의 발표에 의하면 웨이퍼의 지름은 2015년경이면 450㎜ 시대가 도래 할 것이며, 이와 관련된 제조장비 및 이송 장비들도 대비하여야 한다고 제시하고 있다. 웨이퍼가 커지다보니 웨이퍼가 수 십장씩 담긴 용기의 무게 또한 증가되는데 예를 들어, 300㎜ 웨이퍼의 경우 25장들이 카세트 1개의 무게가 대략 8.5Kg~10Kg 정도 되며 부피 또한 커지게 된다. 이에 따라 반도체 디바이스 제조장치도 낱장씩 처리하는 방식으로 바뀌고 있으며, 제조 장치와 이송의 낱장화 에 의해 생산효율을 올리는 것이 업계의 목표로 되어가고 있다. 낱장 ...
최근 반도체 WAFER, LCD 및 PDP, OLED등 크기가 생산성 향상과 판매 원가 절감이라는 시장 요구에 부응하기 위하여 점점 더 대구경화 되어 가는 추세이다. 웨이퍼의 경우 웨이퍼의 사이즈가 8인치에서 12인치(300㎜)로 증대 되었으며 최근 국내 반도체장비기술로드맵(roadmap)의 발표에 의하면 웨이퍼의 지름은 2015년경이면 450㎜ 시대가 도래 할 것이며, 이와 관련된 제조장비 및 이송 장비들도 대비하여야 한다고 제시하고 있다. 웨이퍼가 커지다보니 웨이퍼가 수 십장씩 담긴 용기의 무게 또한 증가되는데 예를 들어, 300㎜ 웨이퍼의 경우 25장들이 카세트 1개의 무게가 대략 8.5Kg~10Kg 정도 되며 부피 또한 커지게 된다. 이에 따라 반도체 디바이스 제조장치도 낱장씩 처리하는 방식으로 바뀌고 있으며, 제조 장치와 이송의 낱장화 에 의해 생산효율을 올리는 것이 업계의 목표로 되어가고 있다. 낱장 이송 장치는 웨이퍼 척이 진공 흡착에 의해 웨이퍼를 흡착 홀딩 하는 진공 흡착 방식이나 정전기력에 의해 웨이퍼를 흡착 홀딩 하는 정전척 방식 그리고 베르누이의 원리를 이용한 웨이퍼 척 방식 등이 알려져 있다. 특히 공기를 이용한 비접촉 이송 장치의 경우, 장비에 유입되는 유량과 FPD 부양 높이 등이 정확하게 제어되어야 하나, 이에 필요한 상세사항은 공개되지 않고 있다. 본 논문에서는 베르누이 원리를 이용하여 공압 손실 최소화 및 이탈 현상 방지, 웨이퍼 진동 최소화 방안으로 핸드장치 주입부에 대한 path length 및 크기 해석, 핸드장치에 center 유무에 따른 효율적인 난류 생성 해석, out 단차형성에 대한 해석을 통하여 선 회류 생성 압력에 대한 해석 및 실험을 통하여 이 시스템이 적용 될 수 있음을 보였다.
최근 반도체 WAFER, LCD 및 PDP, OLED등 크기가 생산성 향상과 판매 원가 절감이라는 시장 요구에 부응하기 위하여 점점 더 대구경화 되어 가는 추세이다. 웨이퍼의 경우 웨이퍼의 사이즈가 8인치에서 12인치(300㎜)로 증대 되었으며 최근 국내 반도체장비기술로드맵(roadmap)의 발표에 의하면 웨이퍼의 지름은 2015년경이면 450㎜ 시대가 도래 할 것이며, 이와 관련된 제조장비 및 이송 장비들도 대비하여야 한다고 제시하고 있다. 웨이퍼가 커지다보니 웨이퍼가 수 십장씩 담긴 용기의 무게 또한 증가되는데 예를 들어, 300㎜ 웨이퍼의 경우 25장들이 카세트 1개의 무게가 대략 8.5Kg~10Kg 정도 되며 부피 또한 커지게 된다. 이에 따라 반도체 디바이스 제조장치도 낱장씩 처리하는 방식으로 바뀌고 있으며, 제조 장치와 이송의 낱장화 에 의해 생산효율을 올리는 것이 업계의 목표로 되어가고 있다. 낱장 이송 장치는 웨이퍼 척이 진공 흡착에 의해 웨이퍼를 흡착 홀딩 하는 진공 흡착 방식이나 정전기력에 의해 웨이퍼를 흡착 홀딩 하는 정전척 방식 그리고 베르누이의 원리를 이용한 웨이퍼 척 방식 등이 알려져 있다. 특히 공기를 이용한 비접촉 이송 장치의 경우, 장비에 유입되는 유량과 FPD 부양 높이 등이 정확하게 제어되어야 하나, 이에 필요한 상세사항은 공개되지 않고 있다. 본 논문에서는 베르누이 원리를 이용하여 공압 손실 최소화 및 이탈 현상 방지, 웨이퍼 진동 최소화 방안으로 핸드장치 주입부에 대한 path length 및 크기 해석, 핸드장치에 center 유무에 따른 효율적인 난류 생성 해석, out 단차형성에 대한 해석을 통하여 선 회류 생성 압력에 대한 해석 및 실험을 통하여 이 시스템이 적용 될 수 있음을 보였다.
Recently the flat size of semiconductor WAFER, LCD, PDP, and OLED have become larger gradually to meet a market need on account of productivity elevation and cost-down. In the case of wafer, the size of wafer is enlarged from 8 inches to 12 inches (300mm). It noted that diameter of wafer may reach a...
Recently the flat size of semiconductor WAFER, LCD, PDP, and OLED have become larger gradually to meet a market need on account of productivity elevation and cost-down. In the case of wafer, the size of wafer is enlarged from 8 inches to 12 inches (300mm). It noted that diameter of wafer may reach at the level of 450mm around 2015 according to announcement of latest domestic semiconductor equipment technology roadmap and manufacture equipment and transfer equipments connected with this trend should prepare. As the size of wafer increased, the weight of a container with several wafers also increased. For the example, in occasion of 300mm wafer, weight of 1 cassette with 25 wafers was about 8.5 ~ 10 kg and volume also increased. Accordingly, semiconductor device manufactory has been changed by method that handles by a sheet. To raise productive efficiency by handling method by a sheet in process is the industry's main target in manufacture device and transfer system. But, it is exposed to problems of flexure occurrence, particle on surface, or defect by mechanical contact. As main handling methods used in transfer system for thin plate, there are three types; the vacuum chuck method that uses vacuum adsorption has been used in conventionally holding large objects, the magnetic chucking method that uses electrostatic force recently has attention, and the aero dynamic method uses the Bernoulli principle has widely been applied in clean process. Specially, air pad unit is main part to consist the non-contact transportation system for transferring thin wafer. It is necessary to control air flux and levitation in this precise system but necessary details items are unavailable for using air. This paper applied to non-contact transfer of 12 inches wafer, and is based on precise control for minimization of pneumatic loss, prevention of wafer secession, and reduction of wafer shock during holding the wafer. Analysis are performed at path length for hand device injection port, inlet air size, and central outlet hole of air pad. Their results are analyzed with effective air flow filed including lifting force. It was seen that this system using the Bernoulli principle can be applied to non-contact transfer line through the results air pad design and negative pressure by swirl creating flow field. Analysis selected path length, center hole as main controlling parameters of levitation. Computational results are compared with the existence data in flow field of velocity and eddy viscosity, wafer velocity. This numerical analysis verified with the above flexure phenomenon. Applied size of the air pad has inlet path length of 10, 15, 20, and 25mm and diameter of 1, 2, 3, and 5mm, respectively. Also, analysis for measurement of air flux performed at varying 40 ~ 100m/s speed on the basis of an existent paper or patent. Because turbulent creation can be significantly changed according to center hole relationship, this work analyzed parametric variations by diameter and height of center hole relationship after comparing difference in existence and nonexistence of the center hole. This work continued to apply multi-nozzle module through the optimization design of single nozzle module. Parametric variations are performed as calculation of liftting forces by recirculated flow field supporting wafer self-weight, and stable levitation for each nozzle. Also, these results are compared with other similar studies and commercial products. For the experimental device, regulator and pneumatic dispatcher are used to give same air pressure in each nozzle. The air-pad is manufactured by plastic material and is consist of 4 parts. The experimental results also showed a good agreements with computational results.
Recently the flat size of semiconductor WAFER, LCD, PDP, and OLED have become larger gradually to meet a market need on account of productivity elevation and cost-down. In the case of wafer, the size of wafer is enlarged from 8 inches to 12 inches (300mm). It noted that diameter of wafer may reach at the level of 450mm around 2015 according to announcement of latest domestic semiconductor equipment technology roadmap and manufacture equipment and transfer equipments connected with this trend should prepare. As the size of wafer increased, the weight of a container with several wafers also increased. For the example, in occasion of 300mm wafer, weight of 1 cassette with 25 wafers was about 8.5 ~ 10 kg and volume also increased. Accordingly, semiconductor device manufactory has been changed by method that handles by a sheet. To raise productive efficiency by handling method by a sheet in process is the industry's main target in manufacture device and transfer system. But, it is exposed to problems of flexure occurrence, particle on surface, or defect by mechanical contact. As main handling methods used in transfer system for thin plate, there are three types; the vacuum chuck method that uses vacuum adsorption has been used in conventionally holding large objects, the magnetic chucking method that uses electrostatic force recently has attention, and the aero dynamic method uses the Bernoulli principle has widely been applied in clean process. Specially, air pad unit is main part to consist the non-contact transportation system for transferring thin wafer. It is necessary to control air flux and levitation in this precise system but necessary details items are unavailable for using air. This paper applied to non-contact transfer of 12 inches wafer, and is based on precise control for minimization of pneumatic loss, prevention of wafer secession, and reduction of wafer shock during holding the wafer. Analysis are performed at path length for hand device injection port, inlet air size, and central outlet hole of air pad. Their results are analyzed with effective air flow filed including lifting force. It was seen that this system using the Bernoulli principle can be applied to non-contact transfer line through the results air pad design and negative pressure by swirl creating flow field. Analysis selected path length, center hole as main controlling parameters of levitation. Computational results are compared with the existence data in flow field of velocity and eddy viscosity, wafer velocity. This numerical analysis verified with the above flexure phenomenon. Applied size of the air pad has inlet path length of 10, 15, 20, and 25mm and diameter of 1, 2, 3, and 5mm, respectively. Also, analysis for measurement of air flux performed at varying 40 ~ 100m/s speed on the basis of an existent paper or patent. Because turbulent creation can be significantly changed according to center hole relationship, this work analyzed parametric variations by diameter and height of center hole relationship after comparing difference in existence and nonexistence of the center hole. This work continued to apply multi-nozzle module through the optimization design of single nozzle module. Parametric variations are performed as calculation of liftting forces by recirculated flow field supporting wafer self-weight, and stable levitation for each nozzle. Also, these results are compared with other similar studies and commercial products. For the experimental device, regulator and pneumatic dispatcher are used to give same air pressure in each nozzle. The air-pad is manufactured by plastic material and is consist of 4 parts. The experimental results also showed a good agreements with computational results.
Keyword
#Wafer Non-contact Bernoulli Chuck Transfer system
※ AI-Helper는 부적절한 답변을 할 수 있습니다.