검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
유전알고리즘은 진화원리에서 발견된 몇몇 특징들을 컴퓨터 알고리즘과 결합시켜 복잡한 최적화 문제를 해결하려는 도구로서 1975년 미국의 Holland 교수에 의해 처음으로 개발되었다. 주어진 문제에서 탐색환경이 다변수 또는 다봉(multi-modal)이 되어 대단히 복잡하거나 또는 부분적으로 알려질 경우는, 구배(gradient)에 기초한 재래식 방법을 사용하여 최적화하는 것은 매우 어렵게 되고 경우에 따라서는 불가능할 수도 있다. 이러한 이유로 유전알고리즘과 같은 강인한 탐색법이 요구된다. 유전알고리즘의 장점은 연속성(continuity), 미분가능성(differentiability), 단봉성(unimodality) 등과 같이 탐색공간에 대한 제약으로부터 자유롭다는 것이다. 다시 말하면 목적함수 외 탐색공간에 대한 사전지식을 필요로 하지 않고, 매우 크고 복잡한 공간일지라도 전역해 쪽으로 수렴해 갈수 있다는 것이다. 이러한 특성 때문에 유전알고리즘은 실제 환경에서 많은 복잡한 최적화 문제를 해결하는 방법으로 인정을 받고 있으며, 함수의 최적화, 신경회로망의 학습, 동적시스템의 식별및 제어, 신호처리등 여러 분야에 성공적으로 응용되고 있다. 이러한 중요성에 비해 유전알고리즘에 대한 연구는 국내적으로는 아직 미진한 수준이나 최근 이에 대한 관심이 고조되고 있으며, 또한 그 응용분야도 점점 넓어져 이론 개발과 실질적인 응용에 확산되리라 생각된다. 따라서 본 해설기사는 유전알고리즘의 원리와 응용 사례를 살펴봄으로서 최적화 문제를 해결하려는 독자들에게 조금이나마 도움을 주고자 한다.
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일