$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

환경오염과 식품공업 측정용 미생물 바이오센서
Microbial Biosensors for Environmental and Food industrial Applications 원문보기

한국생물공학회지 = Korean journal of biotechnology and bioengineering, v.17 no.3, 2002년, pp.213 - 227  

김의락 (계명대학교 자연과학부 화학과)

Abstract AI-Helper 아이콘AI-Helper

To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based o...

주제어

참고문헌 (151)

  1. Janata J. Josowicz M, Vanysek P, and DeVaney DM. (1998) Chemical sensors, Anal Chan. 70: 179R-208R 

  2. Rogers, K R (1998), Biosensor technology for environmental measurement. In: Meyers RA, editor, Encyclopedia of Environmental Analysis and Remediation, p755-768. John Wiley & Sons, New York 

  3. Ursula E, and Keller, S (1998), Chemical Sensors and Biosensors of Medical and BiologicalApplications. Wiley-VCH, Weinheim. New York 

  4. Riedel, K (1994), Microbial sensors and their application in environment. Exp. Techn. Phys. 40(1), 63-76 

  5. Karube, I., T. Matsunaga, S. Mitsuda, and S. Suzuki (1977), Microbial electrode BOD sensor. Biotechn. Bioeng. 19, 1535-1547 

  6. Riedel, K., R. Renneberg, M. KUhn, and F. Scheller (1988), A fast estimation of BOD with microbial sensors. Appl. Microbial. biotechnol. 28, 316-318 

  7. Bickerstaff. G. F. (Eds.) (1997), Immobilization of Enzymes and Cells. Humanae Presss. Totowa. NJ 

  8. D'Souza, S. F (1999), Immobilized enzymes in bioprocess Curr. Sci. 77, 69-79 

  9. Riedel, K (1998), Microbial biosensors based on oxygen electrodes. In: Mulchandani. A., and K. R. Roger. (Eds.), Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 199-223. Humanae Press. Totowa. NJ 

  10. Arikawa, Y., K. Ikebukuro, and 1. Karube (1998), Microbial biosensors based on respiratory inhibition. In: Mulchandani. A, and K. R. Roger. (Eds.), Enzyme and Microbial Bioseneors: Techniques and Protocols. pp.225-235. Humanae Press. Totowa. NJ 

  11. Simonian, A. L., E. I. Rainina, and J. R. Wild (1998), Microbial biosensors based on potentiometric detection. In: Mulchandani, A. and K. R. Roger (Eds.). Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 237-248. Humanae Press. Totowa. NJ 

  12. Rainina, E., E. Efremenco, S. Varfolomeyev, A. L. Simonian, and J. Wild (1996), The Development of a new biosensor based on recombinant E. coli for the detection of organophosphorous neurotoxins. Biosens. Bioelectron. 11, 991-1000 

  13. Patil, A. and S. F. D'Souza (1997), Measurement of in situ halophilic glyceralddehyde-3-phosphate dehydrogenase activity from the permeabilised cells of archaebacterium Haloarcula vallismortis. J. Gen. Appl. Microbiol. 43, 163-167 

  14. Mulchandani, A. and K. R. Rogers (Eds.) (1998), Enzyme and Microbial Biosensors: Techniques and Protocols. Humanae Press. Totowa. NJ 

  15. Svitel, J., O. Curilla, and J. Tkac (1998), Microbial cell-based biosensor for sensing glucose. sucrose or lactose. Biotechnol. Appl. Biochem. 27, 153-158 

  16. D'Souza, S. F (2001), Immobilization of biomaterials for biosensor applications. Appl. Biochem. Biotech. (in press) 

  17. Kamath, N. and S. F. D'Souza (1992), Immobilization of ureolytic cells through flocculation and adhesion on cotton cloth using polyethylenimine. Enzyme Microb. Technol. 13, 935-938 

  18. Macaskie, L. E., R. M. Empson, A. K. Cheetham, C. P. Grey, and A. J. Skarnulis (1992), Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline $HUO_2PO_4 . Science 257, 782-785 

  19. Mulchandani, A., P. Mulchandani, I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorous hydrolase. 1. Potentiometric microbial electrode. Anal. Chem. 70, 4140-4145. 

  20. Mulchandani, A., I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surfaceexpressed organophosphorous hydrolase. 2. Fiber-optic microbial biosensor. Anal. Chem. 70, 5042-5046 

  21. D'Souza, S. F (1989), Immobilized cells: techniques and applications. Indian. J. Microbiol. 29, 83-117 

  22. Rao, B. Y. K., S. S. Godbole, and S. F. D'Souza (1988), Preparation of lactose free milk by fermentation using immobilized Saccharomyces jragilis. Biotechnol. Lett. 10, 427-430 

  23. Joshi, M. S., L. R. Gowda, L. C. Katwa, and S. G. Bhat (1989), Permeabilization of yeast cells (Kluyveromyves jragilis) to lactose by digitonin. Enzyme Microb. Technol.11, 439-449 

  24. Riedel, K. and F. Scheller (1987), Inhibitor-treated microbial sensor for the selective determination of glutamic acid. Analyst 112, 341-342 

  25. Riedel, K., R. Renneberg, and F. Scheller (1990), Adaptable microbial sensor. Anal. Lett. 23, 757-770 

  26. Fleschin, S., C. Bala., A. A. Bunaciu., A. Panait., and H. Y. Aboul-Enein (1998), Enalapril microbial biosensor. Prep. Biochem. biotechnol. 28, 261-269. 

  27. Noshi, N. T. and S. F. D'Souza (1999), Immobilization of activated sludge for the degradation of phenol. J. Environ. Sci. Health Part A Environ. Sci. Engng 34, 1689-1700 

  28. iu, J., L. Bjornsson, and B. Mattiasson (2000), Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens. Bioelectron. 14, 883-893 

  29. Peter, J., W. Buchinger, F. Karner, and W. Hampel (1997), Characteristics of a microbial assay for the detection of halogenated hydrocarbons using cells of an actinomycetes-like organism as a biological component. Acta Biotechnol. 17, 123-130 

  30. Nomura, Y., K. Ikebukuno, K. Yokoyama, T. Takeuchi, Y. Arikawa, S. Ohno, and I. Karube (1994), A novel microbial sensor for anionic surfactant determination. Anal. Lett. 27, 3095-3108 

  31. Reshetilov, A. N., D. A. Efremov, P. V. Iliasov, N. I. Kukushkin, R. Greene, T. Leathers, and A. M. Boronin (1998), Effects of high oxygen concentrations on microbial biosensor signals. Hyperoxygenation by means of perfluorodecaline. Doklady Akademii Nauk 358, 833-835 

  32. D'Souza, S. F. and J. S. Melo (1991), A method for the preparation of co-immobilizates by adhesion using polyethylenimine. Enzyme Microb. Technol. 13, 508-511 

  33. Burlage, R., and C. T. Kuo (1994), Living biosensors for the management and manipulation of microbial consortia. Annu. Rev. Microbiol. 48, 291-309 

  34. Matrubutham, U. and G. S. Sayler (1998), Microbial biosensor based on optical detection. In: Mulchandani, A, and K. R. Roger (Eds.), Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 249-256. Humanae press. Totowa. NJ 

  35. Meighen, E. A (1994), Genetics of bacterial bioluminescence. Annu. Rev. Genet. 28, 117-139 

  36. Heitzer, A., K. Malachowsky, J. Thonnard, P.Bienkowski, D. White, and G. Sayler (1994), Optical biosensor for the environmental on-line monitoring of naphthalene and salicylate bioavaiiabiJity with an immobilised bioluminescent catabolic reporter bacterium. Appl. Environ. Microbiol. 60, 1487-1494 

  37. Ripp, S., D. E. Nivens, C. Werner, and G. S. Sayler(2000), Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl. Microbiol. Biotechnol. 53, 736-741 

  38. Georgopoulos, C., K. Liberek, M. Zyliez, and D. Ang(1994), Properties of the heat shock proteins of Escherichia coil and the autoregulation of the heat shock response. In: Mortimoto, R. I., A. Tissieres, C. Georgopoulos (Eds.), The Biologv of Heat Shock Proteins and Molecular Cheperons. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. NY, pp. 209-250 

  39. Benlsrael, O., H. Benlsrael, and S. Ulitzer (1998), Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl. Environ. Microbiol. 64, 4346-4352 

  40. Kim, U. R., K. S. Roh, Y. D. Ha, Y. S. Seuk, and Y.S. Park (l994), The studies for the malate tissue biosensor using malate dehydrogenase (decarboxylating) in the bundle sheath cell of the com leaf. Kor. J. Biotechnol. Bioeng. 9, 319-324 

  41. Kim, U. R., K. J. Nam, and S. M. Choi (1992), The development of arginine-selective membrane electrode using tissue slices of the rose of sharon. J. Kor. Chem. Soc. 36, 117-139 

  42. Bae, J. H., S. M. Choi, D. J. Lim, and U. R. Kim(1993), The biosensor for L-glutamin using tissue slices of wistar rat. J. Kor. Chem. Soc. 38, 736-741 

  43. Mazzei, F., F. Botre, G. Lorenti, G. Simonetti, F. Porcelli, G. Scibona, and C. Botre (1995), Plant tissue electrode for the determination of atrazine. Anal. Chim. Acta 316, 79-82 

  44. Shoji, R., Y. Sakai, A. Sakoda, and M. Suzuki (2000), Development of a rapid and sensitive bioassay device using human cells immobilized in macroporous microcarriers for the on-site evaluation of environmenttal water. Appl. Microbiol. Biotechnol. 54, 432-438 

  45. Kumar, S. D., A. V. Kulkarni, R. G. Dhaneshwar, and S. F. D'Souza (1992), Cyclic voltametric studies at the glucose oxidase enzyme electrode. Bioelectrochem. Bioenerg. 27, 153-160 

  46. Loranger, C. and R. Carpentier (1994), A fast assay for phytotoxicity measurements using immobilized photosynthetic membranes. Biotechnol. Bioengng 44, 178-183 

  47. Marolia, K. Z. and S. F. D'Souza (1999), Enhancement of the lysozyme activity of the hen egg white foam matrix by cross-linking in the presence of N-acetyl glucosamine. J. Biochem. Biophys. Methods 39, 115-117 

  48. D'Souza, S. F (1983), Osmotic stabilisation of mitochondria using chemical cross-linkers. Biotechnol. Bioengng. 25, 1661-1664 

  49. D'Souza, S. F. and K. Z. Marolia (1999), Stabilization of Micrococcus lysodeikticus cells towards lysis by lysozyme using glutaraldehyde: application as a novel biospecific ligand for the purification of lysozyme. Biotechnol. Tech. 13, 375-378 

  50. Ramakrishna, S. V. and R. S. Prakasham (1999), Microbial fermentation with immobilized cells. Curro Sci. 77, 87-100 

  51. Peter, J., W. Hutter, W. Stollnberger, and W. Hampel (1996), Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens. Bioelectron. 11, 1215-1219 

  52. Koenig, A., C. Zaborosch, and F. Spener (1997), Microbial sensors for PAH in aqueous solution using solubilizers. In: Gottlieb, J., H. Hotzl, K. Huck, and R. Niessner (Eds.), pp. 203-206. Field Screening Europe Kluwer Academic Publishers. The Netherland.Fabrication of oxygen electrode arrays and their incorporation into sensors for measuring biochemical oxygen demand. Anal. Chem. Acta 357, 41-49 

  53. Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators B 67, 142-148 

  54. Rouillon, R., M. Sole, R. Carpentier, and J. L. Marty(1995), Immobilization of thylokoids in polyvinyl alcohol for the detection of herbicides. Sens. Actuators. 27, 477-479 

  55. Ulbricht, M. and A Papra (1997), Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, crosslinking, and covalent binding. Enzyme Microb. Technol. 20, 61-68 

  56. D'Urso, E. M. and G. Fortier (1996), Albumin-poly (ethylene glycol) hydrogel as matrix for enzyme immobilization: biochemical characterization of crosslinked acid phosphatase. Enzyme Microb. Technol. 18, 482-488 

  57. Schmidt, A., G. C. Standfuss, and U. Bilitewski (1996), Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens. Bioelectron. 11, 1139-1145 

  58. Peter, J., W. Hutter, W. Stollnberger, F. Kamer, and W. Hampel (1997), Semicontinuous detection of 1,2dichloroethane in water samples using Xanthobacter autrophicus GJ 10 encapsulated in chitosan beads. Anal. Chem. 69, 2077-2079 

  59. Smidsord, o. and G. Skjac-Break (1990), Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71-78 

  60. Gupte, A. and S. F. D'Souza (1999), Stabilization of alginate beads using radiation polymerized polyacrylamide. J. Biochem. Biophys. Methods 40, 39-44 

  61. Miranda, C. and S. F. D'Souza (1988), Clarification of pectin using pectinolytic fungi immobilized in open pore gelatin block. J. Microbiol. Biotechnol. 3, 60-65 

  62. Katrlik, J., R. Brandsteter, J. Svore, M. Rosenberg, and S. Miertus (1997), Mediator type of glucose microbial biosensor based on Aspergillus niger. Anal. Chim. Acta. 356, 217-224 

  63. Melo, J. S. and S. F. D'Souza (1999), Simultaneous filtration and immobilization of cells from a flowing suspension using a bioreactor containing polyethylenimine coated cotton threads: application in the continuous inversion of sucrose syrups. World J. Microbiol. Biotechnol. 15, 25-27 

  64. Nandakumar, R., and B. Mattiasson (1999), A microbial biosensor using Psuedomonas putida cells immobilized in an expanded bed reactors for the on-line monitoring of phenolic compounds. Anal. Lett. 32, 2379-2393 

  65. Mattiasson, B. (1982), Biospecific reversible immobilization. A method for introducing labile structures into analytical systems. Appl. Biochem. Biotechnol. 7, 121-125 

  66. D'Souza, S. F. and A. Deshpande (2001), Simultaneous purification and reversible immobilization of D amino acid oxidase from Trigonopsis variabilis. Appl. Biochem. Biotechnol. (in press) 

  67. Nikolelis, D., U. Krull, J. Wang, and M. Mascini (Eds.)(1998), Biosensors for direct monitoring of environmental pollutants in Field. Kluwer Academic, London 

  68. Rogers, K. R. and C. L. Gerlach (1999), Update on envi-506A 

  69. Rogers, K. R. (1998), Biosensor technology for environmental measurement. In: Meyers, R. A. (Ed.). Encyclopedia of Environmental Analysis and Remediation, 755-768. Wiley. Chichester. UK 

  70. Bilitewski, U. and A. P. F. Turner (Eds.) (2000), Biosensors for Environmental Monitoring. Harwood Academic, Amsterdam 

  71. Marty, J. L., D. Olive, and Y. Asano (1997), Measurement of BOD-correlation between 5-day BOD and commercial BOD biosensor values. Environ. Technol. 18, 333-337 

  72. Karube, I., T. Matsunaga, S. Mitsuda, and S. Suzuki(1977), Microbial electrode BOD sensors. Biotechnol. Bioengng. 19, 1535-1545 

  73. Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (1999), Arxula adeninivorans LS3 as suitable biosensor for measurement of biodegradable substances in salt water. J. Chem. Technol. Biotechnol. 73, 385-388 

  74. Chan, C., M. Lehmann, K. Tag, M. Lung, G. Kunze, K. Riedel, R. Grundig, and R. Renneberg (1999), Measurement of biodegradable substances using the salt tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate(PCS). Part I. Construction and characterization of the microbial sensor. Biosens. Bioelectron. 14, 131-138 

  75. Lehmann, M., C. Chan, A. Lo, M. Lung, K. Tag, G. Kunze, K. Riedel. B. Grundig, and R. Renneberg (1999), Measuremant of biodegradable substances using the salt tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate(PCS). Part II. Application of the novel biosensor to real samples of coastal and island regions. Biosens. Bioelectron. 14, 295-302 

  76. Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators. B 69, 142-148 

  77. Chee, G. I., Y. Nomura, and I. Karube (1999), Biosensor for the estimation of low biochemical oxygen demand. Anal. Chim. Acta. 379, 185-191 

  78. Yang, Z., H. Suzuki, S. Sasaki, and I. Kurube (1996), Disposable sensor for biochemical oxygen demand. Appl.Microbiol. Biotechnol. 46, 10-14 

  79. Neudoerfer, F. and R. L. A. Meyer (1997), A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments. Marine Ecol. Prog. Ser. 147, 295-300 

  80. Preininger, C., I. Klimant, and O. S. Wolfbeis (1994), Optical fiber sensor for biological oxygen demand. Anal. Chem. 66, 1841-1846 

  81. Weppen, P., I. Ebens, B. G. Muller, and D. Schuller(1991), On-line estimation of biological oxygen demand using direct calorimetry on surface attached microbial cultures. Thermochim. Acta. 193, 135-143 

  82. Hutter, W., J. Peter, H. Swoboda, W. Hampel, E. Rosenberg, D. Kramer, and R. Kellner (1995), Development of microbial assay for chlorinated and brominated hydrocarbons. Anal. Chim. Acta. 306, 237-241 

  83. Peter, J., W. Hutter, W. Stollnberger, and W. Hampel(1996), Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens. Bioelectron. 11, 1215-1219 

  84. Koenig, A., C. Zaborosch, A. Muscat, K. D. Vorlop, and F. Spener (1996), Microbial sensors for naphthalene using Sphingomonas sp. Bl or Pseudomonas fluorescens WW4. Appl. Microbiol. Biotechnol. 45, 844-850 

  85. Ignatov, O. V., S. M. Rogatcheva, S. V. Kozulin, and N. A. Khorkina (1997), Acrylamide and acrylic acid determination using respiratory activity of microbial cells. Biosens. Bioelectrol1. 12, 105-111 

  86. Ignatov, O. V., S. M. Rogatcheva, O. V. Vasileva, and V. V. Ignatov (1996), Selective determination of acrylonitrile, acrylamide and acrylic acid in waste water using microbial cells. Resources Conserv. Recycl. 18, 69-78 

  87. Palchetti, I., A. Cagnini, M. Del Carlc, C. Coppi, M. Mascini, A. P. F. Turner (1997), Determination of acetylcholinesterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta. 337, 315-321 

  88. Mulchandani, A., P. Mulchandani, W. Chen, J. Wang, and L. Chen (1999), Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorous hydrolase. Anal. Chem. 71, 2246-2249 

  89. Sundenmeyer-Klinger, H., W. Meyer, B. Warninghoff, and E. Bock (1984), Membrane bound nitrite oxidoreductase of nitrobacter: evidence for a nitrate reductase system. Arch. Microbiol. 140, 153-158 

  90. Reshetilov, A. N., P. V. Iliasov, H. J. Knackmuss, and A. M. Boronin (2000), The nitrite oxidising activity of Nitribacter strains as a base of microbial biosensor for nitrite detection. Anal. Lett. 33, 29-41 

  91. Ikebukuro, K., M. Honda, K. Nakanishi, Y. Nomura, Y. Masuda, K. Yokoyama, Y. Yamauchi, and I. Karube (1996), Flow-type cyanide sensor using an immobilized microorganism. Electroanalysis. 8, 876-879 

  92. Koenig, A., J. Secker, K. Riedel, and A. Metzger (1997), A microbial sensor for measuring inhibitors and substrates for nitrification in wastewater. Am. Lab, 12-21 

  93. Rouillon, R., M. Tocabens, and R. Carpentier (1999), A photochemical cell for detecting pollutant-induced effects on the activity of immobilized cyanobacterium Synechococcus sp. PCC 7942. Enzyme Microb. Technol. 25, 230-235 

  94. Pavlou, A. K. and A. P. F. Turner (2000), Sniffing out the truth: clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 38, 99-112 

  95. Magan, N. and P. Evans (2000), Volatiles as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. Res. 36, 319-340 

  96. Ukeda, H., G. Wagner, U. Bilitewski, and R. D. Schmid(1992), Flow injection analysis of short-chain fatty acidsin milk based on a microbial electrode. J. Agric. Food Chem. 40, 2324-2327 

  97. Ukeda, H., G. Wagner, G. Weis, M. Miller, H. Klostermeyer, and R. D. Schmid (1992), Application of a microbial sensor for determination of short-chain fatty acids in raw milk samples. Z. Lebensm Uniters Forseh. 195, 1-2 

  98. Ukeda, H., Y. Fujita, M. Sawamura, and H. Kusunose(1994), Determination of short-chain fatty acids in raw milk using a microbial sensor and the relationshin with milk quality. Anal. Sci. 10, 683-685 

  99. Schmidt, A., G. C. Standfuss, and U. Bilitewski (1996), Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens.Bioelectron. 11, 1139-1145 

  100. Liu, B., Y. Cui, and J. Deng (1996), Studies on microbial biosensor for DL-phenylalanine and its dynamic response process. Anal. Lett. 29, 1497-1515 

  101. Endo, H., A. Kamata, M. Hoshi, T. Hayashi, and E. Watanabe (1995), Microbial biosensor system for rapid determination of vitamin B-6. J. Food Sci. 60, 554-557 

  102. Matsumoto, T., M. Fukaya, S. Akita, Y. Kawamura, and Y. Ito (1996), Determination of sulfite in various foods by the microbial biosensor method. J. Jpn. Soc. Food Sci. Technol. 43, 731-734 

  103. Matsumoto, T., M. Fukaya, Y. Kanegae, S. Akita, Y. Kawamura, and Y. Ito (1996), Comparison of the microbial biosensor method with the modified Rankine's method for determination of sulfite in fresh and dried vegetables including sulfur compounds. J. Jpn. Soc. Food Sci. Technol. 43, 716-718 

  104. Scheper, T. H. and F. Lammers (1994), Fermentation monitoring and process control. Curro Opin. Biotechnol. 5, 187-191 

  105. Munkittrick, K. R., E. A. Power, and G. A. Sergy(1991), The relative sensitivity of Microtox. Daphnid. Rainbow trout, fat-head Minnow acute lethality tests. Environ. Toxicol. Water Qual. Int. J. 6, 35-62 

  106. Van Dyk. T. K., W. R. Majarian, K. B. Konstantinov, R. M. Young, P. S. Dhurjati, and R. La Rossa (1994), Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414-1420 

  107. Gu, M. B., P. S. Dhurjati, T. K. Van Dyk, and A LaRossa (1996), A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol. Prog. 12, 393-397 

  108. Rupani, S. P., M. B. Gu, K. B. Konstantinov, P. S. Dhurjati, T. K. Van Dyk, and R. A. LaRossa (1996),Characterization of the stress response of a bioluminescent biological biosensor in batch and continuous cultures. Biotechol. Prog. 12, 387-392 

  109. Selifonova, O., R. Bulgare, and T. Barkay (1993), Bioluminescent sensor for the detection of Hg(II) in the environment. Appl. Environ. Microbial. 59, 3083-3090 

  110. Erbe, J. L, A. C. Adams, K. B. Raylor, and L. M. Hall(1996), Cyanobacteria carring an smt: lux transcriptional fusion as biosensors for detection of heavy metal cations. J. Ind. Microbiol. 17, 80-83 

  111. Cai, J. and M. S. DuBow (1997), Use of luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8, 105-111 

  112. Peitzsch, N., G. Eberz, and D. H. Nies (1998), Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458 

  113. Ramanathan, S., W. Shi, B. P. Rosen, and S. Daunert (1997), Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal. Chern. 69, 3380-3384 

  114. Tauriainen, S., M. Karp, W. Chang, and M. Virta (1998), Luminescent bacterial sensor for cadmium and 

  115. BenIsrael, O., H. BenIsrael, and S. Ulitzer (1998), Identification and quantification of toxic chemicals by use of Escherichia coil carrying lux genes fused to stress promoters. Appl. Environ. Microbiol. 64, 4346-4352 

  116. Paton, G. I., E. A. S. Rattray, C. D. Campbell, M. S. Cresser, L. A. Glover, J. C. L. Meeussen, and K. Killham (1997), Use of genetically modified microbial biosensors for soil ecotoxicity testing. In: Pankhurst, c., B. Doube, and V. Gupta (Eds.), Biological Indicators of Soil Health and Sustainable Productivity. CAB intematonal. pp. 397-418. Wellesboume. UK 

  117. Preston, S., N. Coad, J. Townend, K. Killham, and G. I. Paton (2000), Biosensing the acute toxicity of metal interaction: are they additive, synergistic, or antagonistic? Environ. Toxicol. Chem. 19, 775-780 

  118. Brown, J. S., E. A. S. Rattray, G. I. Paton, G. Reid, I. Caffoor, and K. Killham (1996), Comparative assessment of the toxicity of a papermill effluent by respirometry and luminescence-based bacterial assay. Chemosphere. 32, 1553-1561 

  119. Bundy, J. G., J. L. Wardell, C. D. Campbell, K. Killham, and G. I. Paton (1997), Application of bioluminescence-based microbial biosensors to the ecotoxicity assessment of organotins. Lett. Appl. Microbiol. 25, 353-358 

  120. Fabricant, J. D., Jr. J. H. Chalmer, and M. W. Bhadbury (1995), Bio1uminiscent strain of E. coli for the assay of biocides. Bull. Environ. Contam. Toxicol. 54, 90-95 

  121. Shaw, J., F. Dane, D. Geiger and J. Kloepper (1992), Use of bioluminescence for the detection of genetically engineered microorganisms released in the environment. Appl. Environ. Microbiol. 58, 267-273 

  122. Kobatake, E., T. Niimi, T. Haruyama, Y. Ikariyama, and M. Aizawa (1995), Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosens. Bioelectron. 10, 601-605 

  123. Hollis, R. P., K. Killham, and L. A. Glover (2000), Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol. 66, 1676-1679 

  124. Unger, A., R. Tombolini, L. Molbak, and J. K. Jansson (1999), Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual grp-luxAB marker system. Appl. Environ. Microbiol. 65, 813-821 

  125. Marines, F. (2000), On-line monitoring of growth of Escherichia coli in batch cultures by bioluminescence. Appl. Microbiol. Biotechnol. 53, 536-541 

  126. Gibson, T. D. (1999), Biosensors: the stability problem. Analusis 27, 630-638 

  127. Ogawa, J., S. Shimizu (1999), Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol. 17, 13-21 

  128. Srinivasan, M. C. (1994), Microbial biodiversity and its relevance to screening for novel industrially useful enzymes. Curro Sci. 66, 137-140 

  129. Rella, R., D. Ferrara, G. Barison, L. Doretti, and S. Lora (1996), High temperature operating biosensor for the determination of phenol and related compounds. Biotechnol. Appl. Biochem. 24, 83-88 

  130. Jeffries, C., N. Pasco, K. Baronian, and L. Gorton paste amperometric biosensor L-glutamate dehydrogenase. Biosens. Bioelectron. 12, 225-232 

  131. Arnold, F. H. (1998), Enzyme engineering reaches the boiling point. Proc. Natl. Acad. Sci. 95, 2035-2036 

  132. Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, T. Lonhienne, M. A. Meuwis, and G. Feller (2000), Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107 

  133. Nandakumar, R., and B. Mattiasson (1999), A low temperature microbial biosensor using immobilized psychrophilic bacteria. Biotechnol. Tech. 13, 689-693 

  134. Nies, D. H. (2000), Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4, 77-82 

  135. Pazirandeh, M., L. A. Chrisey, J. M. Mauro, J. R. Campbell, and B. P. Gaber (1995), Expression of the Neurospora crassa metallothionein gene in Escherichiacoli and its effect on heavy-metal uptake. Appl. Microbiol. Biotechnol. 43, 1112-1117 

  136. Cruz, N., S. L. LeBorgne, G. Ghavez-Hernandez, G. Gosset, F. Valle, and F. Bolivar (2000), Engineering the Escherichia coli outer membrane protein OmpC for metal bioadsorption. Biotechnol. Lett. 22, 623-629 

  137. Brim, H., S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly (2000), Engineering Deinococcus radiodurans for metalremediation in radioactive mixed waste environments. Nat. Biotechnol. 18, 85-90 

  138. D'Souza, S. E., W. Altekar, and S. F. D'Souza (1997), Adaptive response of Haloferax mediterranei to low concentration of NaCl( in the growth medium. Arch. Microbiol. 168, 68-71 

  139. Tag, K., M. Lghmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators B 67, 142-148 

  140. Sousa, S., C. Duffy, H. Weitz, A. L. Glover, E. Bar, R. Henkler, and K. Killham (1998), Use of a lux-modified bacterial biosensor to dentify constraints to bioremediation of btex-contaminated sites. Environ. Toxicol. Chem. 17, 1039-1045 

  141. McGrath, S. P., B. Knight, K. Killham, S. Preston, and G. I. Paton (1999), Assesment of the toxicity of metals in soils amended with servage sludge using a chemical speciation technique and a lux-based biosensor. Environ. Toxicol. Chem. 18, 659-663 

  142. Neudoerfer, F., and R. L. A. Meyer (1997), A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments. Marine Ecol. Prog. Ser. 147, 295-300 

  143. Riedel, K., A. V. Naumov, A. M. Boronin, L. A. Golovleva, H. J. Stein, and F. Scheller (1991), Microbial sensors for determination of aromatics and their chlorodervatives: determination of 3-chlorobenzoate using a pseudomonas-containing biosensor. Appl. Microbial. Biotechnol. 35, 559-562 

  144. Matsunaga, T., S. Suzuki, and R. Tomoda (1984), Photomicrobial sensor for selective determination of phosphate. Enzyme Microb. Technol. 6, 355-357 

  145. Suzuki, S., and I. Karube (1987), An amperornetric sensor for carbondioxide based on immobilised bacteria utilising carbondioxide. Anal. chim. Acta 199, 85-91 

  146. Karube, I., Y. Wang, E. Tamiya, and M. Kawarai (1987), Microbial electrode sensor for vitamin-Bl2. Anal. Chim. Acta 199, 93-97 

  147. Renneberg, R., K. Riedel, and F. Scheller (1985), Microbial sensor for aspartame. Appl. Microbiol. Biotechnol. 21, 180-181 

  148. Di Paolantonio, C. L., and G. A. Rechnitz (1982), Induced bacterial electrode for the potentiometric measurement of tyrosine. Anal. Chim. Acta 141, 1-13 

  149. Di Paolantonio, C. L., and G. A. Rechnitz (1983), Stabilized bacteria-based potentiometric electrode for pyruvate. Anal. Chim. Acta 148, 1-12 

  150. Webb, O. F., P. R Bienkowski, U. Matrubutham, F. A. Evans, A. Heitzer, and G. S. Sayler (1997), Kinetics and response of a Psuedomonas fluorescence HK44 biosensor. Biotechnol. Bioengng 54, 491-502 

  151. Sayler, G. S., C. D. Cox, R. BurJage, S. Ripp, D. E. Nivens, C. Werner, Y. Ahn, and U. Matrubutham (1999), Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Fass, R., Y. Flashner, S. Reuveny (Eds), Novel Approaches for Bioremediation of Organic Pollution. Kluwer Academic Plenum Press. New York. pp. 241-254 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로