$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

특이 환경오염물질 검출을 위한 미생물 세포 바이오센서의 활용
Applications of Microbial Whole-Cell Biosensors in Detection of Specific Environmental Pollutants 원문보기

생명과학회지 = Journal of life science, v.21 no.1 = no.129, 2011년, pp.159 - 164  

신혜자 (동서대학교 에너지생명공학부 에너지환경공학)

초록
AI-Helper 아이콘AI-Helper

미생물 세포 바이오센서는 환경오염물질의 모니터링을 위한 좋은 분석도구가 될 수 있다. 이는 리포터유전자들(예로, lux, gfp or lacZ)을 방향족 화합물이나 중금속과 같은 오염물질에 반응하는 유도 조절유전자와 결합하여 만든다. 이러한 유전자 재조합기술을 이용하여 많은 종류의 미생물 바이오센서가 개발되었으며 환경, 의학, 식품, 농업, 및 방위등 다양한 분야에서 활용되고 있다. 또한 바이오센서의 민감도와 검출범위는 조절유전자의 변형을 통해 증가시킬 수있다. 최근에는 미생물 바이오센서 세포를 고효율 검색용 세포 에레이의 칩, 광섬유 등에 고착하여 활용하고 있다. 본 논문은 특이 오염물질의 검출을 위한 유전자 재조합으로 만든 미생물 세포 바이오센서의 현황과 미래에 대해 고찰한다.

Abstract AI-Helper 아이콘AI-Helper

Microbial whole-cell biosensors can be excellent analytical tools for monitoring environmental pollutants. They are constructed by fusing reporter genes (e.g., lux, gfp or lacZ) to inducible regulatory genes which are responsive to the relevant pollutants, such as aromatic hydrocarbons and heavy met...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • More recently, microbial biosensor cells have been incorporated into chips, optic fibers, and other platforms to construct high-throughput biosensors [19,23,42]. This paper reviews recent progress in microbial whole-cell biosensors and their future trends with a focus on the development and application of genetically engineered biosensors used for monitoring of specific environmental pollutants.
본문요약 정보가 도움이 되었나요?

참고문헌 (51)

  1. Bechor, O., D. R. Smulski, T. K. Van Dyk, and R. A. LaRossa. 2002. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fab'::lux fusions. J. Biotechnol. 94, 125-132. 

  2. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212. 

  3. Biran, I., R. Babai, K. Levcov, J. Rishpon, and E. Z. Ron. 2000. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ. Microbiol. 2, 27-33. 

  4. Dawson, J. J. C., C. O. Iroegbu, H. Maciel, and G. I. Paton. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compound in soils. J. App. Microbiol. 104, 141-151. 

  5. Deng, L., S. Guo, M. Zhou, L. Liu, C. Liu, and S. Dong. 2010. A silk derived carbon fiber mat modifided with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosens. Bioelectron. 25, 2189-2193. 

  6. Diaz, E. and M. A. Prieto. 2000. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol. 11, 467-475. 

  7. Diplock, E. E., D. P. Mardlin, K. S. Killham, and G. I. Paton. 2009. Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ. Pollut. 157, 1831-1840. 

  8. D’Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353. 

  9. Durrieu, C. and C. Tran-Minh. 2002. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 51, 206-209. 

  10. Farre, M., C. Goncales, S. Lacorte, D. Barcelo, and M. F. Alpendurada. 2002. Pesticide toxicity assessment using an electrochemical biosensor with Pseudomonas putida and a bioluminescence inhibition assay with Vibrio fischeri. Anal. Bioanal. Chem. 373, 696-703. 

  11. Fujimoto, H., M. Wkabayashi, H. Yamashiro, I. Maeda, K. Isoda, M. Kondoh, M. Kawase, H. Miyasaka, and K. Yagi. 2006. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl. Microbiol. Biotechnol. 73, 332-338. 

  12. Galvao, T. C. and V. de Lorenzo. 2007. Transcriptional regulators a la carte: engineering new effector specificities in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34-42. 

  13. Hakkila, K., T. Green, P. Lesknen, A. Ivask, R. Marks, and M. Virta. 2004. Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 24, 333-342. 

  14. Hansen, L. H. and S. J. Sorensen. 2001. The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb. Ecol. 42, 483-444. 

  15. Harms, H., M. C. Wells, and J. R. van der Meer. 2006. Whole-cell living biosensors-are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273-280. 

  16. Ivask, A., M. Virta, and A. Kahru. 2001. Detection of organomercurials with sensor bacteria. Soil Biol. Biochem. 34, 1439-1447. 

  17. Keane, A., P. Phoenix, S. Goshal, and P. C. Lau. 2002. Exposing culprit organic pollutants: a review. J. Microbiol. Methods 49, 103-119. 

  18. Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60, 235-245. 

  19. Kumar, J., S. K. Jha, and S. F. D’Souza. 2006. Optical microbial biosensors for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens. Bioelectron. 15, 2100-2105. 

  20. Lei, Y., W. Chen, and A. Mulchandani. 2006. Microbial biosensors. Anal. Chim. Acta. 568, 200-210. 

  21. Lei, Y., P. Mulchandani, J. Wang, W. Chen, and A. Mulchandani. 2005. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitropenyl- substituted organophosphate nerve agents. Environ. Sci. Technol. 39, 8853-8857. 

  22. Marques, S., I. Aranda-Olmedo, and J. L. Ramos. 2006. Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr. Opin. Biotechnol. 17, 50-56. 

  23. Matsui, N., T. Kaya, K. Nagamine, T. Yasukawa, H. Shiku, and T. Matsue. 2006. Electrochemical mutagen screening using microbial chip. Biosens. Bioelectron. 21, 1202-1209. 

  24. Medintz, I. L. and J. R. Deschamps. 2006. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr. Opin. Biotechnol. 17, 17-27. 

  25. Mulchandani, P., W. Chen, A. Mulchandani, J. Wang, and L. Chen. 2001. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorous hydrolase. Biosens. Bioelectron. 16, 433-437. 

  26. Norman, A., L. H. Hansen, and S. J. Sorensen. 2005. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl. Environ. Microbiol. 71, 2338-2346. 

  27. Oda, Y., K. Funasaka, M. Kitano, A. Nakama, and T. Yoshikura. 2004. Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ. Mol. Mutag. 43, 10-19. 

  28. Odaci, D., S. Timur, and A. Telefoncu. 2009. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochem. 75, 77-82. 

  29. Paitan, Y., I. Biran, N. Shechter, D. Biran, J. Rishpon, and E. Z. Ron. 2004. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal. Biochem. 335, 175-183. 

  30. Park, H. H., H. Y. Lee, W. K. Lim, and H. J. Shin. 2005. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch. Biochem. Biophys. 434, 67-74. 

  31. Park, H. H., W. K. Lim, and H. J. Shin. 2005b. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim. Biophys. Acta. 1725, 247-255. 

  32. Park, S. M., H. H. Park, W. K. Lim, and H. J. Shin. 2003. A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J. Biotechnol. 103, 227-236. 

  33. Paton, G. I., B. J. Reid, and K. T. Semple. 2009. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ. Pollut. 157, 1643-1648. 

  34. Peitzsch, N., G. Eberz, and D. H. Nies. 1998. Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458. 

  35. Petanen, T., M. Virta, M. Karp, and M. Romantschuk. 2001. Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb. Ecol. 41, 360-368. 

  36. Ron, E. Z. 2007. Biosensing environmental pollution. Curr. Opin. Biotechnol. 18, 252-256. 

  37. Shin, H. J. 2010. Development of highly-sensitive microbial biosensors by mutation of the nahR regulatory gene. J. Biotechnol. 150, 246-250. 

  38. Shin, H. J., H. H. Park, and W. K. Lim. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43. 

  39. Sorensen, S. J., M. Burmolle, and L. H. Hansen. 2006. Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr. Opin. Biotechnol. 17, 11-16. 

  40. Stiner, L. and L. J. Halverson. 2002. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl. Environ. Microbiol. 68, 1962-1971. 

  41. Stocker, J., D. Balluch, M. Gsell, H. Harms, J. S. Feliciano, K. A. Malick, S. Daunert, and J. R. van der Meer. 2003. Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arenate in potable water. Environ. Sci. Technol. 37, 4743-4750. 

  42. Tani, H., K. Maehana, and T. Kamidate. 2004. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfuidic network. Anal. Chem. 76, 6693-6697. 

  43. Tecon, R. and J. R. van der Meer. 2006. Information from single-cell bacteria biosensors: what is it good for? Curr. Opin. Biotechnol. 17, 4-10. 

  44. Tibazarwa, C., P. Corbisier, M. Mench, A. Bossus, P. Solda, M. Mergeay, L. Wyns, and D. van der Lelie. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ. Pollut. 113, 19-26. 

  45. Trang, P. T., M. Berg, P. H. Viet, N. Van Mui, and J. R. van der Meer. 2005. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ. Sci. Technol. 39, 7625-7630. 

  46. van der Meer, J. R., D. Tropel, and M. Jaspers. 2004. Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 6, 1005-1020. 

  47. Vedrine, C., J. C. Leclerc, C. Durrieu, and C. Tran-Minh. 2003. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18, 457-463. 

  48. Vollmer, A. C. and T. K. Van Dyk. 2004. Stress responsive bacteria: Biosensors as environmental monitors. Adv. Microb. Physiol. 49, 131-174. 

  49. Werlen, C., M. C. M. Jaspers, and J. R. van der Meer. 2004. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl. Environ. Microbiol. 70, 43-51. 

  50. Xu, Z., A. Mulchandani, and W. Chen. 2003. Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol. Prog. 19, 1812-1815. 

  51. Yagi, K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 73, 1251-1258. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로