[국내논문]도로 평면곡선부에서 동적궤도이탈모형 개발에 관한 연구 (굴절차량을 중심으로) Development of a Dynamic Offtracking Model on Horizontal Curve Sections (Based on Articulated Vehicles)원문보기
도로의 평면곡선부는 선형 설계시 직선부와 달리 여러 가지 요소를 추가적으로 고려하며 확폭의 문제도 이중의 하나이다. 확폭은 차량 뒷바퀴가 앞바퀴의 궤적을 따라 주행하지 않고 이탈하는 궤도이탈(offtracking)현상 때문에 발생하고, 곡선부 설계시 이러한 현상을 반영하여야 운전자 안전성을 보장할 수 있다. 특히 대형차량 운행이 빈번한 산업도로나. 곡선반경이 작은 산악지역 간선도로의 경우 궤도이탈현상으로 인해 곡선부 사고위험이 증가하기 때문에 확폭 필요성이 강조된다. 본 연구에서는 굴절차량 궤도이탈모형 이론 및 확폭 설치 기준에 관련된 국내외 연구 결과를 비교·검토하여 도로의 기하구조와 차량의 속도를 감안한 현실적인 동적 궤도이탈모형(Dynamic Offtracking Model)을 개발하여 이 모형을 이용한 확폭량 산정 방법을 제시하였다. 본 연구로부터 얻어진 성과는 다음과 같다. 첫째, 견인차와 피견인차의 동적 거동에 편경사영향을 반영할 수 있는 궤도이탈모형을 개발하였다. 둘째, 개발된 동적 궤도이탈모형을 이용하여 우리나라 실정에 맞는 새로운 확폭량 산정 방법을 개발하였다. 셋째, 개발된 모형을 이용하여 실제 궤도 이탈량과 확폭량을 산정하여 현재 사용되고 있는 우리나라 곡선부 확폭 설치기준의 타당성을 살펴보았다.
도로의 평면곡선부는 선형 설계시 직선부와 달리 여러 가지 요소를 추가적으로 고려하며 확폭의 문제도 이중의 하나이다. 확폭은 차량 뒷바퀴가 앞바퀴의 궤적을 따라 주행하지 않고 이탈하는 궤도이탈(offtracking)현상 때문에 발생하고, 곡선부 설계시 이러한 현상을 반영하여야 운전자 안전성을 보장할 수 있다. 특히 대형차량 운행이 빈번한 산업도로나. 곡선반경이 작은 산악지역 간선도로의 경우 궤도이탈현상으로 인해 곡선부 사고위험이 증가하기 때문에 확폭 필요성이 강조된다. 본 연구에서는 굴절차량 궤도이탈모형 이론 및 확폭 설치 기준에 관련된 국내외 연구 결과를 비교·검토하여 도로의 기하구조와 차량의 속도를 감안한 현실적인 동적 궤도이탈모형(Dynamic Offtracking Model)을 개발하여 이 모형을 이용한 확폭량 산정 방법을 제시하였다. 본 연구로부터 얻어진 성과는 다음과 같다. 첫째, 견인차와 피견인차의 동적 거동에 편경사영향을 반영할 수 있는 궤도이탈모형을 개발하였다. 둘째, 개발된 동적 궤도이탈모형을 이용하여 우리나라 실정에 맞는 새로운 확폭량 산정 방법을 개발하였다. 셋째, 개발된 모형을 이용하여 실제 궤도 이탈량과 확폭량을 산정하여 현재 사용되고 있는 우리나라 곡선부 확폭 설치기준의 타당성을 살펴보았다.
Dislike the tangent sections, the horizontal curve sections of roads should be designed, considering several factors : one of such factors is widening. In other words, since widening results from that when a vehicle runs on the horizontal curve sections, the rear wheels of the vehicle run not along ...
Dislike the tangent sections, the horizontal curve sections of roads should be designed, considering several factors : one of such factors is widening. In other words, since widening results from that when a vehicle runs on the horizontal curve sections, the rear wheels of the vehicle run not along with tracks of the front wheels but out of that, such offtracking should be exactly investigated and reflected in design of the curve sections. Especially in the case of industrial roads which semi-trailers and large trucks run frequently or arterial roads with small curve radiuses in mountainous regions. serious offtracking Phenomenons result in increasing the risk of accidents. decreasing the capacities and jeopardizing pedestrians' safety on the curve sections. For the offtracking, widening amounts of roads has been determined under the traditional presumption that vehicles run at a low speed and there is no superelevation. In fact, however, since the vehicles run at a high speed as well as at a low speed and the superelevation is installed on the horizontal curve sections in the structural aspect of roads, the existing standards for installing widening have a limitation to reflect exactly actual Phenomenons. In particular, for articulated wheel axles of a tractor and a trailer and long articulated vehicles, not only the offtracking degree is very high but also the interpretation shows different aspects from one of single axles. Comparing and reviewing the results of Korean and foreign studies related to the trailer offtracking model theory and the standards for installing widening, this study developed a realistic dynamic offtracking model which considers geometric structures of roads and speeds of vehicles, suggested how to measure widening with this model and examined applicability of the model. The findings of this study are as follows ; First. a dynamic offtracking model. which considers dynamic movements of a tractor and a trailer and the superelevation, was developed. Second, a new method to measure widening with the developed dynamic offtracking model was developed and a method to measure widening with swept path width was suggested as well. Finally, validity of the current standards for installing widening was examined by determining actual offtracking and widening amounts with the developed model and the applicability was investigated through the case studies. Compared with the existing offtracking models, the dynamic offtracking model developed in this study can reflect practically vehicle speed. dimension and geometric structural aspects of roads. In conclusion, the meaning of this study is that it reviews validity of the current standards for installing widening and provides a base to establish such standards by suggesting new methods to measure the widening with this dynamic offtracking model.
Dislike the tangent sections, the horizontal curve sections of roads should be designed, considering several factors : one of such factors is widening. In other words, since widening results from that when a vehicle runs on the horizontal curve sections, the rear wheels of the vehicle run not along with tracks of the front wheels but out of that, such offtracking should be exactly investigated and reflected in design of the curve sections. Especially in the case of industrial roads which semi-trailers and large trucks run frequently or arterial roads with small curve radiuses in mountainous regions. serious offtracking Phenomenons result in increasing the risk of accidents. decreasing the capacities and jeopardizing pedestrians' safety on the curve sections. For the offtracking, widening amounts of roads has been determined under the traditional presumption that vehicles run at a low speed and there is no superelevation. In fact, however, since the vehicles run at a high speed as well as at a low speed and the superelevation is installed on the horizontal curve sections in the structural aspect of roads, the existing standards for installing widening have a limitation to reflect exactly actual Phenomenons. In particular, for articulated wheel axles of a tractor and a trailer and long articulated vehicles, not only the offtracking degree is very high but also the interpretation shows different aspects from one of single axles. Comparing and reviewing the results of Korean and foreign studies related to the trailer offtracking model theory and the standards for installing widening, this study developed a realistic dynamic offtracking model which considers geometric structures of roads and speeds of vehicles, suggested how to measure widening with this model and examined applicability of the model. The findings of this study are as follows ; First. a dynamic offtracking model. which considers dynamic movements of a tractor and a trailer and the superelevation, was developed. Second, a new method to measure widening with the developed dynamic offtracking model was developed and a method to measure widening with swept path width was suggested as well. Finally, validity of the current standards for installing widening was examined by determining actual offtracking and widening amounts with the developed model and the applicability was investigated through the case studies. Compared with the existing offtracking models, the dynamic offtracking model developed in this study can reflect practically vehicle speed. dimension and geometric structural aspects of roads. In conclusion, the meaning of this study is that it reviews validity of the current standards for installing widening and provides a base to establish such standards by suggesting new methods to measure the widening with this dynamic offtracking model.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.