$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할
Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments 원문보기

한국육수학회지 = Korean journal of limnology, v.37 no.4 = no.109, 2004년, pp.436 - 447  

최정현 (이화여자대학교 공과대학 환경학과) ,  박석순 (이화여자대학교 공과대학 환경학과)

초록
AI-Helper 아이콘AI-Helper

습지를 규정하는 주요한 특징의 하나인 습지식물은 장기간의 침수로 인해 혐기성 상태로 존재하는 습지 퇴적물에서 생존을 위한 특별한 적응방법을 발달시켰다. 식물체내에 넓게 분포하고 있는 다공성의 세포는 공기중의 산소를 뿌리로 운반하기 위한 통로로 작용하며, 농도차이에 의한 확산과 압력차이에 의한 대류에 의하여 산소가 운반되어진다. 이러한 식물체 내에서의 산소이동은 식물이 혐기성 퇴적물 속으로 뿌리를 내리고 생존하게 하는 주요한 기작이 된다. 뿌리로 이동되어진 산소는 혐기성 퇴적물로 확산되어져서 뿌리주변의 퇴적물은 산화상태로 변화시키고, 뿌리의 호흡, 미생물의 호흡, 미생물에 의한 유기물 분해반응을 촉진시키게 된다. 또한 습지식물은 생장에 필요한 수분을 뿌리로 흡수하며, 이는 지표수와 퇴적물내 공극수가 뿌리주변으로 이동하게 되는 추진력이 된다. 습지 퇴적물은 식물의 사체에서 기인하는 유기물에 의해 수리학적 전도도가 작아서 퇴적물내 물의 움직임이 미미하나, 식물에 의한 물의 흡수는 퇴적물내 물의 움직임을 촉진시키게 된다. 이러한 식물의 특별한 적응기작은 해부학적, 형태학적, 생리학적으로 많은 연구가 수행되어져 왔으나, 이러한 적응기작들에 퇴적물내 생지화학적 반응에 미치는 영향에 대한 연구는 미비한 수준에 머물러있다. 퇴적물내 생지화학적 반응들은 수체에서 유입된 미량 오염물질의 이동 및 변형과정에 영향을 미치게 되므로 식물의 작용에 의한 생지화학적 반응의 변화들은 미량 오염물질의 거동에 영향을 미치게 되며 나아가 수자원과 수질 생태계에 영향을 초래하게 된다. 따라서 식물의 존재와 성장에 따른 퇴적물내 생지화학적 반응의 변화는 생태학적 환경에서 습지의 중요성을 인식하는데 필요한 연구과제라 사료된다. 난이도, 변별도 등에서 유사하므로 당분간 계속 사용하여도 될 것이다. 따른 변화(變化)는 볼 수 없었다. ATP 첨가(添加)로서는 0.30mM의 농도(濃度)에서 0.15 mM의 농도(濃度)에 비(比)하여 Young 율(率)이 낮았다. 3) 외경동맥(外經動脈)의 종절편(縱切片)의 Young 율(率)은 생리적식염수(生理的食鹽水)에 둔 군(群)에서는 15분(分), 45분(分) 및 75분(分)에서 각각(各各) 2.12, 2.48 및 $2.46{\times}10^7 dyne/cm^2$으로서 실험초기(實驗初期)에 비(比)하여 후기(後期)에서 Young 율(率)이 약간(若干) 높은 경향(傾向)을 나타내었고, 이러한 경향(傾向)은 ATP의 첨가(添加)로서도 비슷하였다.수량(收量)과 자실체형성(子實體形成) 소요일(所要日)의 관점(觀點)에서 보면 C/N율(率) 30.46이 어느정도 적당(適當)한 것 같다. 4. Thiamine $50{\mu}g%,\;KH_2PO_4$ 0.2%, $MgSO_4{\cdot}7H_2O$$0.02{\sim}0.03%$일때 균사(菌絲)와 자실체(子實體) 생육(生育)이 우수(優秀)하였으며 미량원소(微量元素)로서는 $FeSO_4{\cdot}7H_2O$,\;ZnSO_4{\cdot}7H_2O$$MnSO_4{\cdot}5H_2O$가 공존(共存)하면 생육촉진(生育促進)의 상승효과(相乘效果)가 인정되었으나 3이원소(元素)중 Mn이 결핍(缺乏)하면 균사(菌絲)와 자실체(子實體)의 생육(生育)이 다소 저하되었다. 이들 염류(鹽類)의 최적농도(最適濃度)는 각각 0.02mg%이었다. 5.

Abstract AI-Helper 아이콘AI-Helper

Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Understanding the mechanisms through which wetland plants may influence the movement and distribution of dissolved solutes and the conditions of their reactions is necessary to manage and design constructed wetlands for wastewater treatment. This article reviews the existing information on oxygen release from roots followed by internal gas transport mechanisms and enhanced water movement into the sedi-ments.
본문요약 정보가 도움이 되었나요?

참고문헌 (80)

  1. Abtew, W.S., K.P. Newman and T. Kosier. 1995. Canopy resistance studies of cattails. Trans. ASAE 38: 113-119 

  2. Allen, R.G., M.E. Jensen, L. James and R.D. Burman. 1989. Operational estimates of reference evapotranspiration. Agron. J. 81: 650-652 

  3. Allen, R.G., J.H. Prueger and R.W. Hill. 1992. Evapotranspiration from isolated stands of hydrophytes: Cattail and Bulrush. Trans. ASAE 35: 1191-1198 

  4. Anderson, M.G. and S.B. Idso. 1987. Surface geometry and stomatal conductance effects on evaporation from aquatic macrophytes. Wat. Resour. Res. 23: 1037-1042 

  5. Armstrong, J. and W. Armstrong. 1988. Phragmites australis-A preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol. 108: 373-382 

  6. Armstrong, J. and W. Armstrong 1990. Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. Ex Steud. New Phytol. 114: 121-128 

  7. Armstrong, J. and W. Armstrong. 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat. Bot. 39: 75-88 

  8. Armstrong, J., W. Armstrong and P.M. Beckett. 1992. Phragmites australis: Venturi- and humidityinduced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 120: 197-207 

  9. Armstrong, W. 1964. Oxygen diffusion from the roots of some British bog plants. Nature 204: 801-802 

  10. Armstrong, W. 1967. The use of polarography in the assay of oxygen diffusing from roots in anaerobic media. Physiol. Plant. 20: 540-553 

  11. Armstrong, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25: 192-197 

  12. Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res. 7: 225-232 

  13. Armstrong, W., J. Armstrong et al. 1990. Measurement and modeling of oxygen release from roots of Phragmites australis. p. 41-52. In: Constructed wetlands in water pollution control (P.F. Cooper and B.C. Findlater, eds.). Pergamon Press, Oxford, U.K 

  14. Armstrong, W. and P.M. Beckett. 1987. Internal aeration and the development of stellar anoxia in submerged roots. A multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol. 105: 221-245 

  15. Armstrong, W. 1994. Polarographic oxygen electrodes and their use in plant aeration studies. Proceedings of the Royal Society of Edinburgh. 102B: 511-527 

  16. Armstrong, W., J. Armstrong and P.M. Beckett. 1996a. Pressurised ventilation in emergent macrophytes: the mechanism and mathematical modeling of humidity-induced convection. Aquat. Bot. 54: 121-135 

  17. Armstrong, W., D. Cousins, J. Armstrong, D.W. Turner and P.M. Beckett. 2000. Oxygen distribution in wetland plant roots and permeability barr-444 Choi, Jung Hyun..Seok Soon Parkiers to gas-exchange with the rhizosphere: a microelectrode and modeling study with Phragmites australis. Ann. Bot. 86: 687-703 

  18. Beckett, P.M., W. Armstrong, S.H.F.W. Justin and J. Armstrong. 1988. On the relative importance of convective and diffusive gas-flows in plant aeration. New Phytol. 110:463-468 

  19. Begg, C.B.M., G.J.D. Kirk, A.F. Mackenzie and H.U. Neue. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128: 469-477 

  20. Bendix, M., T. Tornbjerg and H. Brix. 1994. Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. humidity-induced pressurization and convective throughflow. Aquat. Bot. 49: 75-89 

  21. Benton, A.R., Jr., W.P. James and J.W. Rouse, Jr.. 1978. Evapotranspiration from water hyacinth (Eichhornia crassipes (Mart.) Solms) in Texas reservoir. Wat. Resour. Bull. 14: 919-930 

  22. Brix, H. 1988. Light-dependent variations in the composition of the internal atmosphere of Phragnites australis (Cav.) Trin. Ex Steudel, Aquat. Bot. 30: 319-329 

  23. Brix, H. and H.H. Schierup. 1989. The use of aquatic macrophytes in water-pollution control. Ambio. 18: 100-107 

  24. Brix, H. 1990. Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Wat. Res. 24: 259-266 

  25. Brix, H. and H.H. Schierup. 1990. Soil oxygenation in constructed reed beds: the role of macrophyte and soil-atmosphere interface oxygen transport. p. 53-66. In: Constructed wetlands in water pollution control (P.F. Cooper and B.C., Findlater eds.) Pergamon Press, Oxford, U.K 

  26. Brix, H., B.K. Sorrell and P.T. Orr. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37: 1420-1433 

  27. Brix, H. 1993. Macrophyte-mediated oxygen transfer in wetlands: Transport mechanisms and rates, p. 391-398 In: Constructed wetlands for water quality improvement (G.A. Moshiri Ed.). Boca Raton, Ann Arbor, Lewis Publishers 

  28. Brix, H., B.K. Sorrell and H.H. Schierup. 1996. Gas Fluxes achieved by in situ convective flow in Phragmites australis. Aquat. Bot. 54: 151-163 

  29. Carpenter, S.R., J.J. Else and K.M. Olsen. 1983. Effects of roots on Myriophyllum verticillatum L. on sediment redox conditions. Aquat. Bot. 17: 243-249 

  30. Chabbi, A., K.L. Mckee and I.A. Mendelssohn. 2000. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism. Am. J. Bot. 87: 1081-1090 

  31. Chanton, J.P. and J.W.H. Dacey. 1991. Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition. p. 65-92. In: Trace Gas Emissions by Plants (T. Sharkey, E. Holland, and H. Mooney, eds). Academic Press, San Diego, CA 

  32. Choi, J.H. 2004. The effect of plants on the dynamics of sulfur species and zinc in wetland sediments. Princeton University Press, Princeton, NJ 

  33. Colmer, T.D. 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Env. 26: 17-36 

  34. Connell, E.L., T.D. Colmer and D.I. Walker. 1999. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat. Bot. 63: 219-228 

  35. Dacey, J.W.H. 1980. Internal winds in the waterlilies: Adaptation for life in anaerobic sediments. Science 210: 1017-1019 

  36. Dacey, J.W.H. 1981. Pressurized Ventilation in the Yellow Waterlily. Ecology 62(5): 1137-1147 

  37. Dunbabin, J.S., J. Pokorny and K.H. Bowmer. 1988. Rhizosphere oxygenation by Typha domingensis Pers. in miniature artificial wetland filters used for metal removal from wastewaters. Aquat. Bot. 29: 303-317 

  38. Dunbabin, J.S. and K.H. Bowmer. 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci. Tot. Environ. 111: 151-168 

  39. El-Shatnawi, M.K.J., I.M. Makhadmeh. 2001. Ecophysiology of the plant-rhizosphere system. J Agron Crop Sci. 187: 1-9 

  40. Fleming-Singer, M.S. and A.J. Horne. 2002. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification. Environ. Sci. Technol. 36: 1231-1237 

  41. Gilbert, B. and P. Frenzel. 1998. Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30: 1903-1916 

  42. Gries C., L. Kappen and R. L?ch. 1990. Mechanism of flood tolerance in reed, Phragmites australis (Cav.) Trin. ex Steudel. New Phytol. 114: 589-593 

  43. Grosse, W., H.B. B?hel and H. Tiebel. 1991. Pressurized ventilation in wetland plants. Aquat. Bot. 39: 89-98 

  44. Gunderson, L.H. 1989. Accounting for discrepancies in pan evaporation calculations. Wat. Resour. Bull. 25: 573-579 

  45. Hale, M.G. and L.D. Moore. 1979. Factors affecting root exudation II. 1970-79. Adv. Agron. 31: 93-124 

  46. Hopkins, W.G. 1995. Introduction to plant physiology. New York, John Wiley & Sons, Inc 

  47. Idso, S.B. 1981. Relative rates of evaporative water losses from open and vegetation covered water bodies. Wat. Resour. Bull. 17: 46-48 

  48. Jackson, M.B. and W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274-287 

  49. Jaff? P.R., S. Wang, P.L. Kallin and S.L. Smith. 2001. The Dynamics of Arsenic in Saturated Porous Media: Fate and Transport Modeling for Deep-Water Sediments, Wetland Sediments, and Groundwater Environments. In: Water Rock Interactions, Ore deposits, and Environmental Geochemistry: A Tribute to David Crerar (R. Hellman and S.A. Wood, eds.).The Geochemical Society, Special Publication No 7 

  50. Justin, S.H.F.W. and W. Armstrong. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106: 465-495 

  51. Kallin, P.L. 1999. Modeling the fate and transport of trace metal contaminants in natural and constructed surface flow wetlands. Princeton University Press, Princeton, NJ 

  52. Kickuth, R. 1977. Degradation and incorporation of nutrients from rural waste waters by plant rhizosphere under limnetic conditions. pp. 335-343. In: Utilization of manure by land spreading. UER 5672e. Commission of the European Communities. London 

  53. Kludze, H.K. and R.D. DeLaune. 1996. Soil redox intensity effects on oxygen exchange and growth of Cattail and Sawgrass. Soil Sci. Soc. Am. J. 60: 616-621 

  54. Koch, M.S. and P.S. Rawlik. 1993. Transpiration and Stomatal Conductance of two wetland macrophytes. Am. J. Bot. 80(10): 1146-1154 

  55. Laan, P., M.J. Berrevoets, S. Lythe, W. Armstrong and C.W.P.M. Blom. 1989. Root morphology and aerenchyma formation as indicators of the floodtolerance of Rumex species. J. Ecol. 77: 693-703 

  56. Martin, J., Hofherr E. and Quigley, M.F. 2003. Effect of Typha Latifolia transpiration and harvesting on nitrate concentrations in surface water of wetland microcosms. Wetlands 23(4): 835-844 

  57. Martin, J.F. and K.R. Reddy. 1997. Interaction and spatial distribution of wetland nitrogen processes. Ecol. Model. 105: 1-21 

  58. McDonald, M.P., N.W. Galwey and T.D. Colmer. 2002. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wet- and dry-land grass species. Plant Cell Env. 25: 441-451 

  59. Medelssohn, I.A. and M.T. Postek. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. Am. J. Bot. 69: 904-912 

  60. Mendelssohn, I.A., B.A. Keiss and J.S. Wakeley. 1995. Factors controlling the formation of oxidized root channels: a review. Wetlands 15: 37-46 

  61. Mevi-Sch?z, J. and Grosse, W. 1988. A two-way gas transport system in Nelumbo nucifera. Plant Cell Environ. 11: 27-34 

  62. Mitsch, W.J. and J.G. Gosselink. 1993. Wetlands. Van Nostrand Reinhohld, New York, NY, USA 

  63. Park, S.S. and Jaff? P.R. 1996. Development of a sediment redox potential model for the assessment of postdepositional metal mobility. Ecol. Model. 91: 169-181 

  64. Park, S.S. and Jaff? P.R. 1999. A numerical model to estimate sediment oxygen levels and demand. J. Environ. Qual. 28: 1219-1226 

  65. Penfound, W.T. and T.T. Earle. 1948. The biology of the water hyacinth. Ecol. Mono. 18: 417-472 

  66. Reddy, K.R., W.H. Patrick Jr. and C.W. Lindau. 1989. Nitrification-denitrification at the plant rootsediment interface in wetlands. Limnol. Oceanogr. 34(6): 1003-1013 

  67. Scholander, P.F., L. van Dam and S.I. Scholander. 1955. Gas exchange in the roots of mangrove. Am. J. Bot. 42-92 

  68. Smirnoff, N. and R.M.M. Crawford. 1983. Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann. Bot. 51: 237-249 

  69. Sorrell, B.K. and P.T. Orr. 1993. H± exchange and nutrient uptake by roots of the emergent hydrophytes, Cyperus involucratus Rottb., Eleocharis sphacelata R. Br. And Juncus ingens N.A. Wakef. New Phytol. 125: 85-92 

  70. Sorrell, B.K. and P.I. Boon. 1994. Convective gas flow in Eleocharis sphacelata R. Br: methane transport and release from wetlands. Aquat. Bot. 47: 197-212 

  71. Thomson, C.J., W. Armstrong, I. Waters and H. Greenway. 1990. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Env. 13: 395-403 

  72. Trought, M.C.T. and M.C. Drew. 1980. The development of water-logging damage in young wheat plants in anaerobic solution cultures. J. Exp. Bot. 31: 1573-1585 

  73. Visser, E.J.W., R.H.M. Nabben, C.W.P.M. Blom and .A.C.J. Voesenek. 1997. Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Env. 20: 647-653 

  74. Visser, E.J.W., T.D. Colmer, C.W.P.M. Blom and L.A. C.J. Voesenek. 2000. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Env. 23: 1237-1245 

  75. Wang, T. and J.H. Peverly. 1999. Iron oxidation States on root surfaces of a wetland plant (Phragmites australis). Soil Sci. Soc. Am. J. 63: 247-252 

  76. Weisner, S.E.B., P.G. Eriksson, W. Graneli and L. Leonardson. 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio. 6: 363-367 

  77. Winter, M. and R. Kickuth. 1989. Elimination of sul-phur compounds from wastewater by the root zone process-I. Performance of large-scale purification plant at a textile finishing industry. Wat. Res. 23(5): 535-546 

  78. Winter, M. and R. Kickuth. 1989. Elimination of sulphur compounds from wastewater by the root zone process-II. Mode of formation of sulphur deposits. Wat. Res. 23(5): 547-560 

  79. Xu, S. and P.R. Jaffe. Effect of Plants on the Removal of Hexavalent Chromium in Wetland Sediments. submitted 

  80. Yavitt, J.B. and A.K. Knapp. 1998. Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. New Phytol. 139: 495-503 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로