$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Selection of the Most Sensitive Waveband Reflectance for Normalized Difference Vegetation Index Calculation to Predict Rice Crop Growth and Grain Yield

Abstract

A split-plot designed experiment including four rice varieties and 10 nitrogen levels was conducted in 2003 at the Experimental Farm of Seoul National University, Suwon, Korea. Before heading, hyperspectral canopy reflectance (300-1100nm with 1.55nm step) and nine crop variables such as shoot fresh weight (SFW), leaf area index, leaf dry weight, shoot dry weight, leaf N concentration, shoot N concentration, leaf N density, shoot N density and N nutrition index were measured at 54 and 72 days after transplanting. Grain yield, total number of spikelets, number of filled spikelets and 1000-grain weight were measured at harvest. 14,635 narrow-band NDVIs as combinations of reflectances at wavelength ${\lambda}l\;and\;{\lambda}2$ were correlated to the nine crop variables. One NDVI with the highest correlation coefficient with a given crop variable was selected as the NDVI of the best fit for this crop variable. As expected, models to predict crop variables before heading using the NDVI of the best fit had higher $r^2$ (>10\%)$ than those using common broad- band NDVI red or NDVI green. The models with the narrow-band NDVI of the best fit overcame broad- band NDVI saturation at high LAI values as frequently reported. Models using NDVIs of the best fit at booting showed higher predictive capacity for yield and yield component than models using crop variables.

참고문헌 (21)

  1. Bausch, W. C., D. M. Lund, and M. C. Blue. 1990 Robotic Data Acquisition of Directional Reflectance Factors. Remote Sens Environ 30 159-168 
  2. Cassanova, D , G. F Epema, and J. Goudriaan. 1998. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Res 55 : 83-92 
  3. Cui, R X and B W Lee. 2002. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean J. Crop Sci. 47 : 390-394 
  4. Duggin, M J 1980 The field measurement of reflectance factors Photogram Eng Remote Sens. 46. 643-647 
  5. Hinzman, L. D, M E Bauer, and C. S. T Daughtry. 1986 Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens Environ 19 47-61 
  6. Huete, A R. 1988. A soil-adjusted vegetation index (SAVI) Remote Sens. Environ 25 : 295-309 
  7. Ntanos, D. A. and S. D Koutroubas. 2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res 74 93-101 
  8. Thenkabail, P. S., R B Smith, and E D. Pauw 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics Remote Sens Environ. 71. 158-182 
  9. Yoder B J. and R E P. Crosby. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spec.tra (400-2500 nm) at leaf and canopy scales. Remote Sens Environ. 53 : 199-211 
  10. Casanova, D., J Goudriaan, and A. D. Bosch 2000. Testing the performance of ORYZA1, an explanatory model for rice growth simulation, for Mediterranean conditions. Eur J Agron. 12 : 175-189 
  11. Haboudane, D., J. R. Miller, E Pattey, P. J. Zarco-Tejada, and I. strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture Remote Sens Environ 90 337-352 
  12. McMurtrey, R. F, E W Chappella M S. Kim, and J J Meisinger. 1994. Distinguishing nitrogen fertilization levels in field corn (Zea mays L) WIth active induced fluoresing and passive reflectance measurements Remote Sens Environ 47 : 36-44 
  13. Reusch, R 2003 Optimisation of oblique-view remote sensing measurement of crop N-uptake under changing irradiance conditions In. Stafford, J and Werner A. (Eds ), Precision Agriculture. Wageningen Academic Publishers, Netherlands. pp 573-578 
  14. Shanahan, J F, J. S. Schepers, D. D Francis, G. E. Varvel, W. W. Wilhelm, J. M. Tringe, M. R. Schemmer, and D. J. Major. 2001. Use of remote imagery to estimate corn grain yield Agron. J. 93. 583-589 
  15. Cui, R X., M. H Kim, J H Kim, H S Nam, and B W.Lee. 2002. Determination of critical nitrogen concentration and dilution curve for rice growth. Korean J. Crop Sci 47 : 127-131 
  16. Graeff, S and W Claupein. 2003. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur. J Agron. 19. 611-618 
  17. Hansen, P. M. and J K. Schjoerring 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86 : 542-553 
  18. Takebe, M., T. Yoneyama, K. Inada, and T. Murakami. 1990. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status Plant Soil 122 : 295-297 
  19. Elvidge, C. D. and Z. Chen 1995 Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ. 54 38-48 
  20. Tilley, D R, M. Ahmed, J. H Son, and H. Badrinarayanan. 2003. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol. Eng. (In press) 
  21. Diker, K. and W C. Bausch 2003. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosys. Eng. 85 : 437-447 

이 논문을 인용한 문헌 (1)

  1. Kang, Seong-Soo ; Gong, Hyo-Young ; Jung, Hyun-Cheol ; Kim, Yi-Hyun ; Hong, Suk-Young ; Hong, Soon-Dal 2010. "Evaluation of Biomass and Nitrogen Status in Paddy Rice Using Ground-Based Remote Sensors" 韓國土壤肥料學會誌 = Korean journal of Soil Science and Fertilizer, 43(6): 954~961 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일