• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.

저자의 다른 논문

참고문헌 (16)

  1. T. T. Soong, Active Structural Control: Theory and Practice, Addison-Wesley, 1990 
  2. J. Sietsma and R. Dow, 'Neural net pruning-why and how,' Proc. of IEEE International Conference on Neural Networks, vol. 1, pp. 325- 333, 1988 
  3. M. S. Fadali and K. E. Zayyat, 'Disturbance rejection control of bridge response to earthquake excitation,' Earthquake Engineering and Structural Dynamics, vol. 25, pp. 291-302, 1996 
  4. G. Mirchandani and W. Cao, 'On hidden nodes for neural nets,' IEEE Trans. on Circuits and Systems, vol. 36, no. 5, pp. 661-664, 1989 
  5. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999 
  6. J. Ghaboussi and A. Joghataie, 'Active control structures using neural networks,' Journal of Engineering Mechanics, vol. 121, no. 4, pp. 555- 567, 1995 
  7. H. C. Cho, 'A study on vibration control of building structure using neural network predictive control,' Master Thesis, Dong-A University, Korea, 1999 
  8. A. Tani, H. Kawamura, and S. Ryu, 'Intelligent fuzzy optimal control of building structures,' Journal of Engineering Structures, vol. 20, no. 3, pp. 184-192, 1998 
  9. K. Yoshida, S. Kang, and T. Kim, 'LQG control and $H_\infty$ control of vibration isolation for multidegree- of-freedom systems,' Proc. of First World Conference on Structural Control, CA, pp. TP4-43-52, 1994 
  10. J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991 
  11. M. Saiidi, 'Hysteresis models for reinforced concrete,' Journal of the Structural Division of ASCE, vol. 108, no. ST5, pp. 1077-1087, 1982 
  12. M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' IEE Proc.-F, vol. 138, no. 1, pp. 55-62, 1991 
  13. S. Kung and J. Hwang, 'An algebraic projection analysis for optimal hidden units size and learning rates in backpropagation learning,' Technical Report, Princeton University, 1987 
  14. K. G. Mehrotra, C. K. Mohan, and S. Ranka, 'Bound on the number of samples needed for neural learning,' IEEE Trans. on Neural Networks, vol. 2, no. 6, pp. 548-558, 1991 
  15. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison- Wesley, 1989 
  16. R. P. Lippmann, 'An introduction to computing with neural nets,' IEEE ASSP Magazine, vol. 4, no. 2, pp. 4-22, 1987 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일