$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 혼합비율에 따른 키토산/젤라틴 혼합용액의 항균활성에 관한 연구
Study on the Effect of Blending Ratios on the Antibacterial Activities of Chitosan/Gelatin Blend Solutions 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.37 no.3 = no.181, 2005년, pp.405 - 411  

김병호 ((주)오뚜기) ,  박장우 (국립한경대학교 식품생물공학과 및 식품생물산업연구소) ,  홍지향 (서울대학교 농업생명과학연구원)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 항균활성을 지니는 기능성 생고분자 필름을 제조하기 위한 전 단계로 키토산과 젤라틴을 이용하여 혼합비율별로 키토산/젤라틴 혼합용액의 항균활성을 측정하였다. 사용된 균주는 그램양성(Bacillus cereus ATCC 14579, Listeria monecytogenes ATCC 15313) 및 그램음성(Escherichia coli ATCC 25922, Salmonella enteritidis IFO 3313) 세균 4종류이고, paper diffusion method와 optical density method로 항균효과를 나타내는 키토산/젤라틴 혼합용액의 최적 혼합비율 및 키토산의 최소저해농도를 측정하였다. 또한 키토산의 용매로 사용된 2%(v/v) 초산의 항균효과를 측정하였다. 혼합비율별로 제조된 키토산/젤라틴 혼합용액을 이용하여 paper diffusion method로 paper disc(8 mm)에 $50\;{\mu}L$, $75\;{\mu}L$씩 분주시켜 항균활성을 측정한 결과, 저해환의 크기는 8 mm에서 18.07 mm로 측정되었다. 키토산의 농도가 0%에서 10%(B. cereus, E. coli, E. enteritidis), 20%(L. monocytogenes)까지는 전혀 항균활성을 나타내지 않았지만, 그 농도가 20%(B. cereus, E. coli, S. enteritidis), 30%(L. moncytogenes) 이상으로 높아질수록 항균활성이 서서히 증가하는 경향을 보였다. L. monocytogenes는 키토산의 농도가 30%에서 항균활성을 나타내었지만, 그 저해환의 크기가 뚜렷하지 않았다. 따라서 B. cereus. E. coli 및 S. enteritidis 균주들에 대하여 항균환성을 나타내는 혼합용액의 혼합비율은 chitosan/gelatin=2/8이였고, 그 때 항균활성을 나타내는 키토산의 절대량은 0.3 mg으로 측정되었다. 또한 L. monocytogenes에 대해서는 혼합비율이 chitosan/gelatin=4/6이였고, 항균활성을 나타내는 키토산의 절대량은 0.6 mg이었다. 혼합비율별로 제조된 키토산/젤라틴 혼합용액을 이용하여 항균활성을 나타내는 키토산의 최소저해농도를 optical density method로 측정하였다. 그 결과, B. cereus, L. monocytogenes, E. coli 및 S. enteritidis에 대한 키토산의 최소저해농도는 각각 0.1461 mg/mL, 0.2419 mg/mL, 0.0980 mg/mL 및 0.0490 mg/mL로 측정되었다. 또한 2%(v/v) 초산 자체의 최소저해농도를 측정한 결과, B. cereus, L. mosocytogenes, E. eoli에 대해서는 control과 비교시 유의적인 항균효과는 나타나지 않았다. 반면에 S. enteritidis의 경우는 배양시간 4시간까지는 항균활성을 나타내었지만, 8시간 이후부터는 S. enteritidis의 성장이 control 보다 높아져 배양시간 20시간에서는 control 보다 약 2배 이상 균주의 성장을 촉진시켰다.

Abstract AI-Helper 아이콘AI-Helper

Chitosan, second largest biomass after cellulose on earth, has potential for use as functional food package due to its antibacterial activity. However, due to high melting temperature of chitosan, chitosan films have been made by casting method. Because gelatin has relatively low molting temperature...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 항균활성을 지니는 기능성 생고분자 필름을 제조하기 위한 전 단계로 키토산과 젤라틴을 이용하여 혼합비 율별로 키토산/젤라틴 혼합용액의 항균활성을 측정하였다. 사용된 균주는 그램 양성(Bacillus cereus ATCC 14579, Listeria monocytogenes ATCC 15313) 및 그「램음성 (Escherichia coli ATCC 25922, Salmonella enteritidis IFO 3313) 세균 4종류이고, paper diffusion method와 optical density method로 항균효과를 나타내는 키토산/젤라틴 혼합용액의 최적 혼합비율 및 키토산 의 최소저해농도를 측정하였다.
  • 또한 Bigi 등 (24)은 glutaraldehydes. 가교 결합시켜 젤라틴 필름의 기계적인 특성을 향상시키고, 그 필름의 열적 성질을 연구하였다. Sobral 둥(25)은 sorbitol의 작용에 따라 bovine hide와 pigskin 젤라틴 가식성 필름에 있어 수분 투과도, 기계적 및 열적 특성에 관하여 연구하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Berkely RCW, Gooday GW, Ellwood DC. Chitin chitosan and their degradative enzymes, pp. 204-250. In Microbial Polysaccharides and Polysaccharides. Berkely RCW (ed). Academic Press, New York, NY, USA (1979) 

  2. Arai K, Kinumaki T, Fugita T. Toxicity of chitosan. Bull. Tokai Reg. Fich Res. Lab. 56: 86-94 (1968) 

  3. Kendra DF, Hadwiger LA. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8: 276-281 (1984) 

  4. Muzzarelli RAA, Barontini G, Rocchetti R. Immobilized enzymes on chitosan columns: $\alpha$ chymotrypsin and acid phosphatase. Biotechnol. Bioeng. 18: 1445 (1976) 

  5. Koyano T, Minoura N, Nagura M, Kobayashi K. Attachment and growth of cultured fibrablast cells on PVA/chitosan blended hydrogels. Biomed. Mater. Res. 39:486-490 (1998) 

  6. Toroko A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M. Growth inhibitory effect of hexa-N-acetylchitohexaose against Meth-A solid turner. Chem. Pharm. Bull. 36: 784-790 (1988) 

  7. Kim MH, Oh SW, Hong SP, Yoon SK. Antimicrobial characteristics of chitosan and chitosan oligosaccharides on the microorganisms related to kimchi. Korean J. Food Sci. Technol. 30: 1439-1447(1998) 

  8. Yamaguchi H. Application of chitin/chitosan to food and medicine fields. Shokuhin to Kaihatsu. 21: 203 (1986) 

  9. Allan CR, Hadwiger LA. The fungicidal effects of chitosan on fungi and varying cell wall composition. Exp. Mycol. 3: 285-287 (1979) 

  10. Uchida Y, Izume M, Ohtakara A. Purification and Enzymatic properties of Chitosanase from Bacillus sp. M. Bull. Fac. Agr. Saga Univ. 66: 105-116(1989) 

  11. Li Q, Dunn T, Grandmaison EW, Goosen MFA. Applications and properties of chitosan. pp. 3-30. In: Applications of chitin and chitosan, Goosen MFA (ed). Technomic Publishing Co., Lancaster, UK (1997) 

  12. Jo HL. Antimicrobial activity and food preservative function of a low molecular weight chitosan. Ph. D. thesis. Pusan National Fisheries Univ., Pusan, Korea (1989) 

  13. Stossel P, Leuba JL. Effect of chitosan, chitin and some amino-sugars on growth of various soilborns phytopathogenic fungi. Phytopath. W. 111: 82-90 (1984) 

  14. Shahidi F, Arachchi JKV, You JJ. Food applications of chitin and chitosan. Trends Food Sci. Technol. 10: 37-51 (1999) 

  15. Cha DS, Cooksey K, Chinnan MS, Park HJ. Release of nisin from various heat-pressed and cast films. Lebensm.-Wiss. U.-Technol. 36: 209-213 (2003) 

  16. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr. Polymers, 53: 439-446 (2003) 

  17. Chung YC, Wang HL, Chen YM, Li SL. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technol. 88: 179-184 (2003) 

  18. Choi YH, Lim ST, Yoo BS. Dynamic rheological properties of gelatin. Korean J. Food Sci. Technol. 34: 830-834 (2002) 

  19. Normand V, Muller S, Ravey JC, Parker A. Gelation kinetics of gelation: a master curve and network modeling. Macromolecules. 33: 1063-1071 (2000) 

  20. Ross. Murphy SB. Structure and rheology of gelatin gels. Polymer 33: 2622-2627 (1992) 

  21. Gilsenan PM, Ross-Murphy SB. Rheology characterization of gelatins from mammalian and marine sources. Food Hydrocolloids 14: 191-195 (2000) 

  22. Wu J, Chiu SC, Rearce EM, Kwei TK. Effects of phenolic compounds on gelation behavior of gelatin gels. J. Polym. Sci. Part A: Polym. Chem. 39: 224-231 (2000) 

  23. Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials 19: 739-744(1998) 

  24. Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. Drawn gelatin films with improved mechanical properties. Biomaterials 19: 2335-2340(1998) 

  25. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids 15: 423-432 (2001) 

  26. Conner DE, Beuchat LR. Effect of essential oil from plants on growth of food spoilage yeast. J. Food Sci. 49: 429-434 (1984) 

  27. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1990) 

  28. Tokura S, Ueno K, Miyazaki S, Nishi N. Molecular weight dependent antimicrobial activity by chitosan. Macromolecular Symposia 120: 1-9(1997) 

  29. Liu XF, Guan YL, Yang DZ, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 79:1324-1335(2001) 

  30. Hwang JK, Kim HJ, Shim JS, Pyun YP. Bacteriocidal activity of chitosan on Streptococcus mutans. Korean J. Food Sci. Technol. 31:522-526(1999) 

  31. Sudarshan NR, Hoover DG Knorr D. Antibacterial action of chitosan. Food Biotechnol. 6: 257-272 (1992) 

  32. Oh SW, Hong SP, Kim HJ, Choi YJ. Antimicrobial effects of chitosans on Escherichia coli O157:H7, Staphyloccus aureus and Candida albicans. Korean J. Food Sci. Technol. 32: 218-224 (2000) 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로