[국내논문]수학 교수${\\cdot}$학습 과정에서 과제의 인지적 수준 분석 - 초등학교 '비와 비율' 단원을 중심으로 - An Analysis of Cognitive Demands of Tasks in Elementary Mathematical Instruction: Focusing on 'Ratio and Proportion'원문보기
수학 수업에서 핵심적인 역할을 하는 과제의 인지적 수준은 교수${\cdot}$학습 과정 동안 다양하게 변할 수 있다. 이에 본 연구는 4개의 6학년 수학교실에서 '비와 비율' 단원에 제시된 주요 과제들을 대상으로 우리나라 수학교실에서 나타나는 과제 설정과 실행 패턴은 어떠한지, 그리고 그 패턴에 영향을 미치는 교실 요인은 무엇인지 면밀하게 살펴보았다. 분석 결과 초기의 높은 수준의 인지적 과제가 수업 내내 전반적으로 유지되는 경우도 있었으나, 여러 가지 요인에 의해서 의미와 연계되지 않은 절차, 비체계적인 탐구, 불충분한 탐구로 쇠퇴하는 경우도 있었다. 이에 본 연구는 수학 시간에 교사가 특히 주의해야 할 요인을 밝히고, 전반적으로 정적인 의미의 분석보다는 수학적 과제의 인지적 수준이 변화하는 과정에 대한 이해 및 분석의 중요성을 강조한다.
수학 수업에서 핵심적인 역할을 하는 과제의 인지적 수준은 교수${\cdot}$학습 과정 동안 다양하게 변할 수 있다. 이에 본 연구는 4개의 6학년 수학교실에서 '비와 비율' 단원에 제시된 주요 과제들을 대상으로 우리나라 수학교실에서 나타나는 과제 설정과 실행 패턴은 어떠한지, 그리고 그 패턴에 영향을 미치는 교실 요인은 무엇인지 면밀하게 살펴보았다. 분석 결과 초기의 높은 수준의 인지적 과제가 수업 내내 전반적으로 유지되는 경우도 있었으나, 여러 가지 요인에 의해서 의미와 연계되지 않은 절차, 비체계적인 탐구, 불충분한 탐구로 쇠퇴하는 경우도 있었다. 이에 본 연구는 수학 시간에 교사가 특히 주의해야 할 요인을 밝히고, 전반적으로 정적인 의미의 분석보다는 수학적 과제의 인지적 수준이 변화하는 과정에 대한 이해 및 분석의 중요성을 강조한다.
Given that cognitive demands of mathematical tasks can be changed during instruction, this study attempts to provide a detailed description to explore how tasks are set up and implemented in the classroom and what are the classroom-based factors. As an exploratory and qualitative case study, 4 of si...
Given that cognitive demands of mathematical tasks can be changed during instruction, this study attempts to provide a detailed description to explore how tasks are set up and implemented in the classroom and what are the classroom-based factors. As an exploratory and qualitative case study, 4 of six-grade classrooms where high-level tasks on ratio and proportion were used were videotaped and analyzed with regard to the patterns emerged during the task setup and implementation. With regard to 16 tasks, four kinds of Patterns emerged: (a) maintenance of high-level cognitive demands (7 tasks), (b) decline into the procedure without connection to the meaning (1 task), (c) decline into unsystematic exploration (2 tasks), and (d) decline into not-sufficient exploration (6 tasks), which means that the only partial meaning of a given task is addressed. The 4th pattern is particularly significant, mainly because previous studies have not identified. Contributing factors to this pattern include private-learning without reasonable explanation, well-performed model presented at the beginning of a lesson, and mathematical concepts which are not clear in the textbook. On the one hand, factors associated with the maintenance of high-level cognitive demands include Improvising a task based on students' for knowledge, scaffolding of students' thinking, encouraging students to justify and explain their reasoning, using group-activity appropriately, and rethinking the solution processes. On the other hand, factors associated with the decline of high-level cognitive demands include too much or too little time, inappropriateness of a task for given students, little interest in high-level thinking process, and emphasis on the correct answer in place of its meaning. These factors may urge teachers to be sensitive of what should be focused during their teaching practices to keep the high-level cognitive demands. To emphasize, cognitive demands are fixed neither by the task nor by the teacher. So, we need to study them in the process of teaching and learning.
Given that cognitive demands of mathematical tasks can be changed during instruction, this study attempts to provide a detailed description to explore how tasks are set up and implemented in the classroom and what are the classroom-based factors. As an exploratory and qualitative case study, 4 of six-grade classrooms where high-level tasks on ratio and proportion were used were videotaped and analyzed with regard to the patterns emerged during the task setup and implementation. With regard to 16 tasks, four kinds of Patterns emerged: (a) maintenance of high-level cognitive demands (7 tasks), (b) decline into the procedure without connection to the meaning (1 task), (c) decline into unsystematic exploration (2 tasks), and (d) decline into not-sufficient exploration (6 tasks), which means that the only partial meaning of a given task is addressed. The 4th pattern is particularly significant, mainly because previous studies have not identified. Contributing factors to this pattern include private-learning without reasonable explanation, well-performed model presented at the beginning of a lesson, and mathematical concepts which are not clear in the textbook. On the one hand, factors associated with the maintenance of high-level cognitive demands include Improvising a task based on students' for knowledge, scaffolding of students' thinking, encouraging students to justify and explain their reasoning, using group-activity appropriately, and rethinking the solution processes. On the other hand, factors associated with the decline of high-level cognitive demands include too much or too little time, inappropriateness of a task for given students, little interest in high-level thinking process, and emphasis on the correct answer in place of its meaning. These factors may urge teachers to be sensitive of what should be focused during their teaching practices to keep the high-level cognitive demands. To emphasize, cognitive demands are fixed neither by the task nor by the teacher. So, we need to study them in the process of teaching and learning.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.