$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지하수에서 비소의 용해 및 분리(speciation): 리뷰
Arsenic Dissolution and Speciation in Groundwater: review paper 원문보기

자원환경지질 = Economic and environmental geology, v.38 no.5, 2005년, pp.587 - 597  

김명진 (한국해양대하교 건설 환경공학부)

초록
AI-Helper 아이콘AI-Helper

본 논문은 지하수에서의 비소화학과 발생에 관한 것이다. 특히, 비소종의 물리화학적 특성, As(III)의 산화, 비소의 거동과 관련된 지화학 과정, 토양으로부터 비소의 용해, 비소함유 광물로부터 비소용출 메커니즘을 주로 다루고 있다.

Abstract AI-Helper 아이콘AI-Helper

This review deals with arsenic chemistry and its occurrence in groundwater. Specifically, the paper gives an overview regarding chemical and physical properties of arsenic species, oxidation of As(III), geochemical processes related to the fate and transport of arsenic, arsenic leaching from soil, a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • (a) 비소의 흡착과 공침은 흡착점에 대해 경쟁하는 다른 용질에 의해 영향을 받는다. 예를 들면, 인산은 철산화물 등의 흡착점을 두고 비소와 경쟁하며 비소의 반응을 방해한다.
  • (b) 비소의 흡착과 공침은 가역적인 과정이 아닐 수도 있다.
  • Fe2+와 As1-의 산화는 공기중에서 보다는 공기로 포화된 증류수에서 훨씬 더 빠르게 진행되었다. 이 연구자들은 비소는 일단 표면에서 산화되고 비소음이온이 물 속으로 빠르게 녹아나온다고 제안했다. 공기 중에서 A"의 산화는 Fe2+보다 더 빠르고, S?2-의 산화는 가장 느리게 일어났다.
본문요약 정보가 도움이 되었나요?

참고문헌 (74)

  1. Andreae, M.O. (1981) Arsenic: industrial, biomedical, environmental perspectives. In Proceedings of the Arsenic Symposium, Lederer, W.H. and Fensterheim, R.J., (eds.), Van Nostrand, New York, p. 378-391 

  2. Azcue, J.M. (1995) Environmental significance of elevated natural levels of arsenic. Environmental Review, v. 3, p. 212-221 

  3. Bermejo-Barrera, P., Barciela-Alonso, M.C., Ferron-Novais, M., and Bermejo-Barrera, A. (1995) Speci-ation of arsenic by the determination of total arsenic and arsenic(III) in marine sediment samples by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, v. 10, p. 247-252 

  4. Bockelen, A. and Niener, R. (1992) Removal of arsenic from mineral water. Vom Wasser, v. 78, p. 355-362 

  5. Borgono, J.M., Vicent, P., Venturino, H. and Infante, A. (1977) Arsenic in drinking water of the city of Anto-fagasta: epidemiological and clinical studies before and after the installation of a treatment plant. Environmental Health Perspectives, v. 19, p. 103-105 

  6. Borho, M. and Wilderer, P. (1996) Optimized removal of arsenate(III) by adaptation of oxidation and precipitation processes to the filtration step. Water Science and Technology, v. 34, p. 25-31 

  7. Borzsonyi, M, Bereczky, A., Rudnai, P. Csanady, M. and Horvath, A. (1992) Epidemiological studies on human subjects exposed to arsenic in drinking water in southeast Hungary. Archives of Toxicology, v. 66, p. 77-78 

  8. Bowell, R.J. (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, v. 9, p. 279-286 

  9. Breed, A.W., Harrison, S.T.L., and Hansford, G.S. (1997) Technical note a preliminary investigation of the ferric leaching of a pyrite/arsenopyrite flotation concentrate. Minerals Engineering, v. 10, p. 1023-1030 

  10. Buckley, A.N. and Walker, W. (1988) The surface composition of arsenopyrite exposed to oxidizing environments. Applications of Surface Science, v. 35, p. 227-240 

  11. Caroli, S. (1996) Direct methods of speciation of heavy metals in natural waters. In Element Speciation in Bioinorganic Chemistry, Winefordner, J.D. (ed.), New York, John Wiley and Sons, 23p 

  12. Chappel, J., Chiswell, B. and Olszowy, H. (1995) Speciation of arsenic in a contaminated soil by solvent extraction. Talanta, v. 42, p. 323-329 

  13. Chatterjee, A, Das, D. and Chakraborti, D. (1993) A study of ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. Environmental Pollution, v. 80, p. 57-65 

  14. Chatterjee, A., Das, D., Mandal, B.K., Chowdhury, T.R., Samanta G. and Chakraborti, D. (1995) Arsenic in ground water in six districts of west Bengal, India: the biggest arsenic calamity in the world. Analyst, v. 120, p. 643-650 

  15. Chen, S.L., Dzeng, S.R., Yang, M.H., Chlu, K.H., Shleh, G.M. and Wai, CM. (1994) Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environmental Science and Technology, v. 28, p. 877-881 

  16. Chen, S.L., Yen, S.J., Yang, M.H. and Lin, T.H. (1995) Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic black-foot disease. Biological Trace Element Research, v. 48, p. 263-274 

  17. Cherry J.A., Shaikh, A.U., Tallman, D.E. and Nicholson, R.V. (1979) Arsenic species as an indicator of redox conditions in groundwater. Journal of Hydrology, v. 43, p. 373-392 

  18. Clifford, D., Ceber, L. and Chow, S. (1983) Arsenic(III)/ Arsenic(V) separation by chloride-form ion-exchange resins. XI. American Water Works Association. Water Quality Technology Conference, Norfolk, VA 

  19. Cullen, W.R. and Reimer, K.J. (1989) Arsenic speciation in the environment. Chemical Review, v. 89, p. 713-764 

  20. Del Razo, L.M., Arellano, M.A. and Cebrian, M.E. (1990) The oxidation states of As in well water from a chronic arsenism area of Northern Mexico. Environmental Pollution, v. 64, p. 143-153 

  21. Demesmay, C. and Olle, M. (1997) Application of microwave digestion to the preparation of sediment samples for arsenic speciation. Fresenius Journal of Analytical Chemistry, v. 357, p. 1116-1121 

  22. Driehaus, W., Seith, R, and Jekel, M. (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Research, v. 29, p. 297-305 

  23. Edwards, M. (1994) Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. Journal. American Water Works Association, p. 64-78 

  24. Evangelou, V.P., Seta, A.K., and Holt, A. (1998) Potential role of bicarbonate during pyrite oxidation. Environmental Science and Technology, v. 32, p. 2084-2091 

  25. Evangelou, V.P. and Zhang, Y.L. (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Critical Reviews in Environmental Science and Technology, v. 25, p. 141-199 

  26. Fleischer, M. (1983) Glossary of Mineral Species. The mineral record Inc., Tucson, Arizona. 202p 

  27. Forstner, U. (1993) Metal speciation-general concepts and applications. International Journal of Environmental Analytical Chemistry, v. 51, p. 5-23 

  28. Frank, P. and Clifford, D. (1986) Arsenic(HI) Oxidation and Removal from Drinking Water U.S. EPA[Rep.], EPA-600-52-86/021 

  29. Goldsmith, J.R., Deane, M. Thorn, J. and Gentry, G. (1972) Evaluation of health implications of elevated arsenic in well water. Water Research, v. 6, p. 1133-1136 

  30. Harrington, J.M., Middaugh, J.P., Morse, D.L., and Hous-worth, J. (1978) A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks, Alaska. American Journal of Epidemiology, v. 108, p. 377-385 

  31. Hopenhayn-Rich, C, Biggs, M.L., Fuchs, A., Bergoglio, R., Tello, E.E., Nicolli, H., and Smith, A.H. (1996) Bladder cancer mortality associated with arsenic in drinking water in Argentina Epidemiology, v. 7, p. 117-124 

  32. Irgolic, K.T., Greschonig, H. and Howard, A.G. (1995) Arsenic. In Analyst: the Encyclopedia of Analytical Science Academic, London 

  33. Jekel, M.R. (1994) Removal of arsenic in drinking water treatment. In Arsenic in the Environment, Part I: Cycling and Characterization, Nriagu, J.O. (ed.), Wiley-Interscience, New York, p. 119-132 

  34. Johnson, D.L. and Pilson, M.E.Q. (1975) The oxidation of arsenite in seawater. Environmental Letters, v. 8, p.157-171 

  35. Kinniburgh, D.G., Jackson, M.L. and Syers, J.K. (1976) Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Science Society of America. Journal, v. 40, p. 796-799 

  36. Komnitsas, K., Xenidis, A. and Adam, K. (1995) Oxidation of pyrite and arsenopyrite in sulphidic spoils in Lavrion. Minerals Engineering, v. 8, p. 1443-1454 

  37. Korte, N.E. and Fernando, Q. (1991) A review of arsenic(HI) in groundwater. Critical Reviews in Environmental Control, v. 21, p. 1-39 

  38. Kreiss, K., Zack, M.M., Feldman, R.G., Niles, C.A., Chir-ico-Post, J., Sax, D.S., Landrigan, P.J., Boyd, M.H. and Cox, D.H. (1983) Neurologic evaluation of a population exposed to arsenic in Alaskan well water. Archives of Environmental Health, v. 38, p. 116-121 

  39. Kurttio, P., Komulainen, H., Hakala, H. and Pekkanen, J. (1998) Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Archives of Environmental Contamination and Toxicology, v. 34, p. 297-305 

  40. Lazaro, I., Gonzalez, I., Cruz, R. and Monroy, M.G. (1997) Electrochemical study of orpiment (As2S3) and realgar (As2S2) in acidic medium. Journal. Electrochemical Society, v.144, p.4128-4132 

  41. Lin, T-H. and Huang, Y-L. (1998) Arsenic species in drinking water, hair, fingernails, and urine of patients with blackfoot disease. Journal of Toxicology and Environmental Health, Part A, v. 53, p. 85-93 

  42. Manning, B.A., Fendorf, S.E. and Goldberg, S. (1998) Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, v. 32, p. 2383-2388 

  43. Manning, B.A. and Martens, D.A. (1997) Speciation of arsenic(III) and As(V) in seidment extracts by high-performance liquid chromatography-hydride generation atomic absorption spectrophotometry. Environmental Science and Technology, v. 31, p. 171-177 

  44. Mariner, P.E., Holzmer, F.J., Jackson, R.E. and Meinardus, H.W. (1996) Effects of high pH on arsenic mobility in a shallow sandy aquifer and on aquifer permeability along the adjacent shoreline, Commencement Bay Superfund Site, Tacoma, Washington. Environmental Science and Technology, v. 30, p. 1645-1651 

  45. Masscheleyn, P.H., Delaune, R.D. and Patrick, Jr. W.H. (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, v. 25, p. 1414-1419 

  46. Matisoff, G., Khourey, C.J., Hall, J.F., Varnes, A.W. and Strain, W.H. (1982) The nature and source of arsenic in northeastern Ohio ground water. Ground water, v. 20, p. 446-456 

  47. McGeehan, S.L. (1996) Arsenic sorption and redox reactions: relevance to transport and remediation. Journal of Environmental Science and Health. Part A, v. 31, p. 2319-2336 

  48. Mok, W.M. and Wai, C.M. (1994) Mobilization of arsenic in contaminated river waters. In Arsenic in the Environment Parti: Cycling andCcharacterization, Nriagu, J.O. (ed.), Wiley, New York, p. 99-118 

  49. Mok, W.M. and Wai, C.M. (1990) Distribution and mobilization of arsenic species in the Coeur D'Alene River, Idaho. Environmental Science and Technology, v. 24, p. 102-108 

  50. Morrison, G.M.R, Batley, G.E. and Florence, T.M. (1989) Metal speciation and toxicity. Chemistry of Britain, v. 25, p. 791 

  51. Nesbitt, H.W., Muir, I.J. and Pratt, A.R. (1995) Oxidation of arsenopyrite by air and air-saturated, distilled water, and implication for mechanism of oxidation. Geochimica et Cosmochimica Acta, v. 59, p. 1773-1786 

  52. Nicolli, H.B., Suriano, J.M., Gomez Peral, M.A., Ferpozzi, L.H. and Baleani, O.A. (1989) Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Cordoba, Argentina. Environmental geology and Water Science, v. 14, p. 3-16 

  53. Nordstrom, D.K. and Munoz, J.L. (1985) Geochemical Thermodynamics, p. 477 

  54. Oscarson, D.W., Huang, P.M., Defosse, C. and Herbillo, A. (1981) Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature, v. 291, p. 50-51 

  55. Pantsar-Kallio, M and Manninen, P.K.G. (1997) Speciation of mobile arsenic in soil samples as a function of pH. Science of the Total Environment, v. 204, p. 193-200 

  56. Parks, G.A. (1967) Aqueous surface chemistry of oxides and complex oxide minerals. Equilibrium Concepts in Natural Water Systems. Advances in Chemistry Series, American Chemical Society, Washington D.C, p. 121-160 

  57. Peterson, M.L. and Carpenter, R. (1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjord. Marine Chemistry, v. 12, p. 295-321 

  58. Pierce, M.I. and Moore, C.B. (1980) Adsorption of ars-enite on amorphous iron hydroxide from dilute aqueous solution. Environmental Science and Technology, v. 14, p. 214-216 

  59. Puttemans, F. and Massart, D.L., (1982) Solvent extraction procedures for the differential determination of arsenic(V) and arsenic(III) species by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, v. 141, p. 225 

  60. Richardson, S. and Vaughan, D.J. (1989) Arsenopyrite: a spectroscopic investigation of altered surfaces. Mineralogical Magazine, v. 53, p. 223-229 

  61. Schaufelberger, F.A. (1994) Arsenic minerals formed at low temperatures. In Arsenic in the Environment Part I: Cycling and Characterization, Nriagu, J.O. (ed.), John Wiley & Sons, Inc., New York, p. 403-415 

  62. Singer, P.C. and Stumm, W. (1970) Acid mine drainage: the rate-determining step. Science, v. 167, p. 1121-1123 

  63. Smedley, P.L., Edmunds, W.M. and Pelig-Ba, K.B. (1996) Mobility of arsenic in groundwater in the Obuasi gold-moning area of Guana: some implications for human health. In Environmental Geochemistry and Health Appleton, J.D., Fuge, R., and McCall, G.J.H. (eds.). Geological Society Special Publication, No. 113, London, p. 163-181 

  64. Smith, J.D. (1973) Arsenic, Antimony and Bismuth. In Comprehensive Inorganic Chemistry Volume 2, Pergamon Press, p. 580-683 

  65. Soto, E.G., Rodriquez, E.A., Rodriquez, D.P. Mahia P.L., and Lorenzo, S.M. (1994) Extraction and speciation of inorganic arsenic in marine sediments. Science of the Total Environment, v. 141, p. 87-91 

  66. Sun, X. and Doner H. (1998) Adsorption and oxidation of arsenite on goethite Soil Science, v. 163, p. 278-287 

  67. Takamatsu, T, Kawashima, M. and Koyama, M. (1985) The role of $Mn^{2+}$ -rich hydrous manganese oxide in the accumulation of arsenic in lake sediments. Water Research, v. 19, p. 1029-1032 

  68. Thornton, I. and Farago, M. (1997) The geochemistry of arsenic. In Arsenic: Exposure and Health Effects, p. 1-2 

  69. Tseng, W.P. (1977) Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, v. 19, p. 109-119 

  70. Wauchope, R.D. (1975) Fixation of arsenical herbicides phosphate, and arsenate in alluvial soils. Journal of Environmental Quality, v. 4, p. 355-358 

  71. Webb, J.L. (1966) Enzyme and Metabolic Inhibitors, Vol. 3, Academic Press, New york, chap. 6 

  72. Welch, A.H., Lico, M.S., and Hughes, J.L. (1988) Arsenic in ground water of the western United States. Ground Water, May-June, p. 333-347 

  73. Whanger, P.D., Weswig, P.H., and Stoner, J.C. (1977) Arsenic levels in Oregon waters. Environmental Health Perspectives, v. 19, p. 139-143 

  74. Williams, M., Fordyce, F., Paijitprapapon, A. and Charoen-chaisri, P. (1996) Arsenic contamination in surface drainage and groundwater in part of die southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environmental Geology, v. 27, p. 16-33 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로