$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Changes of Organic Solutes and Antioxidative Enzyme Activity in Rice Seedling under Salt Stress 원문보기

Korean journal of crop science = 韓國作物學會誌, v.50 no.5, 2005년, pp.325 - 331  

Park So-Hyeon (Department of Plant Resources and Science, Hankyong National University) ,  Sung Jwa-Kyung (National Institute of Agricultural and Science Technology, RDA) ,  Lee Su-Yeon (Department of Plant Resources and Science, Hankyong National University) ,  Lee Ju-Young (National Institute of Agricultural and Science Technology, RDA) ,  Jang Byoung-Choon (National Institute of Agricultural and Science Technology, RDA) ,  Song Beom-Heom (Department of Agronomy, Chungbuk National University) ,  Kim Tae-Wan (Department of Plant Resources and Science, Hankyong National University)

Abstract AI-Helper 아이콘AI-Helper

Seedlings of two rice genotyopes, cvs. Ilpumbyeo and Gancheokbyeo, were exposed to 0, 50 and 100 mM NaCl in nutrient solution for nine days. Plants were collected at the interval of 3 days and organic and inorganic solutes in leaves and roots and antioxidative enzyme activity in leaves were determin...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2003). In this paper, we report on a positive correlation between compatible solute accumulation and salt tolerance in rice genotypes. There were striking differences in superoxide dismutase activity between the two cultivars with increasing salt concentration (Fig.
  • The aim of this work was to better understand changes in early growth, cargbohydrate and proline levels and specific antioxidative enzymes activities for rice cItivars with dii- ferent salt resistance.
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. Acar, O., I. Turkan, and F. Ozdemir, 2001. Superoxide dismutase and peroxidase activites in drought sensitive and resistant barley (Hordeum vulgare L.) Cultivars. Acta Physiol. Plant. 23(3) : 351-356 

  2. Aebi, H. 1974. Catalases. In: H.U. Bergmeyer (Ed.), Methods of enzymatic analysis, vol. 2, Academic Press, NY. 673-684 

  3. Alamgir, A. N. M. and M. Y. Ali. 1999. Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPase activity of rice (Oryza sativa L.). Bangladesh J. Botany. 28: 145-149 

  4. Bates, L. S., R. P. Waldren, and I. D. Tearc. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39 : 205-207 

  5. Beyer, W. F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161 : 559-566 

  6. Bohnert, H., D. Nelson, and R. Jenson. 1995. Adaptations to envirionmental stress. Plant Cell 7 : 1099-1111 

  7. Bowler, C., M. V. Montagu, and D. Inze, 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116 

  8. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254 

  9. Cakmak, I., D. Strbac, and H. Marschner. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44(258) : 127-132 

  10. Cramer, G. R. and R. S. Nowak. 1992. Supplemental managanese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol. Plant. 84 : 600-605 

  11. Crowe, J. H. and M. V. Crowe. 1992. Membrane integrity in anhydrobiotic organisms: Toward a mechanism for stabilizing dry cell, In GN Somero, CB Osmond, CL Bolis, eds., Water and Life, Springer-Verlag, Berlin, pp. 87-103 

  12. Dionisio-Sese, M. L. and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135 : 1-9 

  13. Dubey, R. S. and A. K. Singh. 1991. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plants. Biol. Plant. 42 : 233-239 

  14. Gadallah, M. A. A. 1999. Effect of proline and glycinebetaine on Viciafaba responses to salt stress. Biol. Plant 42 : 247-249 

  15. Gilbert, G. A., M. V. Gadush, C. Wilson, and M. A. Madore. 1998. Amino acid accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress. J. Exp. Bot. 49 : 107-114 

  16. Greenway, H. and R. Munns. 1980. Mechanism of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol. 31 : 149-190 

  17. Hasegawa, P., R. A. Bressan, J.-K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Mol. Biol. 51 : 463-499 

  18. Hernandez, S., C. Delen, and F. Larher. 2000. Proline accumulation by leaf tissues of tomato plants in response to salinity. Comptes Rendus de L Academie Des Sciences Serie-Sciences de La Vie-Life Sciences. 323: 551-557 

  19. Kashem, M. A., N. Sultana, T. Ikeda, H. Hori, T. Loboda, and T. Mitsui. 2000b. Alteration of starch-sucrose transition in germinating wheat seed under sodium choride salinity. J. Plant Biol. 43: 121-127 

  20. Kerepesi, I. and G. Galiba, 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci. 40: 482-487 

  21. Khan, M. S. A., A. Hamid, A. B. M. Salahuddin, A. Quasem, and M. A. Karim. 1997. Effect of sodium chloride on growth, photosynthesis and mineral ions accumulation of different types of rice (Oryza sativa L.). J. Agron. Crop Sci. 179 : 149-161 

  22. Lacerda, C. F., J. Cambraia, M. A. O. Cano, and H. A. Ruiz. 2001. Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCI stress. Rev. Bras. Fisiol. Veg. 13 : 270-284 

  23. Lewitt, J. 1980. Salt and ion stresses, in: J. Levitt (Ed.), Responses to environmental stresses, Academic Press, New York. pp. 365-488 

  24. Lutts, S., J. Bouharmont, and J. M. Kinet, 1999. Physiological characterisation of salt-resistant rice (Oryza sativa L.) somaclones, Aust. J. Bot. 47 : 835-849 

  25. Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCI effects on proline metabolism in rice (Oryza sativa L.) seedlings. Physiol. Plant 105 : 450-458 

  26. Madan, S., H. S. Nainawatte, R. K. Jain, and J. B. Choudhury. 1995. Proline and proline metabolizing enzymes in vitro selected NaCI tolerant Brassica juncea under salt stress. Ann. Bot. 76: 51-57 

  27. Mansour, M. M. F. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43(4) : 491-500 

  28. Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell Environ. 16 : 15-24 

  29. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25 : 239-250 

  30. Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13 : 143-160 

  31. Okusanya, O. T. and I. A. Ungar. 1984. The growth and mineral composition of three species of Spergularia as affected by salinity and nutrients at high salinity. Am. J. Bot. 71 : 47-57 

  32. Perez-Alfocea, F., F. Estan, M. Caro, and M. C. Balarin. 1993. Response of tomato cultivars to salinity. Plant Soil 150 : 203-211 

  33. Putter. J. 1974. Peroxidases, in: H.U. Bergmeyer (Ed.), Methods of enzymatic analysis. vol. 2, Academic Press, NY. 685-690 

  34. Ramanjulu, S. and C. Sudhakar. 2001. Alleviation of NaCI salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. J. Plant Biol. 28 : 203-206 

  35. Roe, J. H. 1955. The determination of-sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212: 335-343 

  36. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101 : 7-12 

  37. Shalata, A., V. Mittova, M. Volokita, M. Guy, and M. Tal. 2001. Response ofthe cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112: 487-494 

  38. Singha, S. and M. A. Choudhuri, 1990. Effect of salinity (NaCI) stress on $H_2O_2$ metabolism in Vigna and Oryza seedlings Biochem, Physiol. Pflanzen. 186: 69-74 

  39. Sultana, N., T. Ikeda, and R. Itoh. 1999. Effect of NaCI salinity on photosynthesis and dry mater accumulation in developing rice grains. Environ. Exp. Bot. 42 : 211-220 

  40. Timasheff, S. N. and T. Arakawa. 1989. Stabilization of protein structure by solvents. In; Greighton, T. E. ed. Protein structure. A practical approach. Oxford. IRL Press. pp. 331-344 

  41. Vaidyanathan, H., P. Sivakumar, R. Chakrabarty, and G. Thaomas. 2003. Scavenging of reactive oxygen species in NaCI-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci. 165 : 1411-1418 

  42. Zidan, M., H. Azaizeh, and P. M. Neumann. 1990. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol. 93 : 7-11 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로