$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물체의 면역반응 기작
Molecular Mechanism of Plant Immune Response 원문보기

식물생명공학회지 = Korean journal of plant biotechnology, v.32 no.2, 2005년, pp.73 - 83  

권택민 (동아대학교 분자생명공학부) ,  남재성 (동아대학교 분자생명공학부)

Abstract AI-Helper 아이콘AI-Helper

Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products and sequential signal transduction pathways activating de...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 2003; Jones and Takemoto 2004). 본 총설에서는 저항성 유전자를 매개로 하는 식물병 저항성 분야의 흥미로운 최근의 연구결과들을 바탕으로 식물체와 병원 균간의 상호작용을 설명하는 기본적인 이론인 유전자 대 유전자 가설에 대한 분자생물학적 생화학적 연구 결과들과 동물과 달리 고착성이며 순환면역체계가 없는 식물체가 어떻게 수많은 병원균들로부터 자신을 보호하는 병 저항성 방어체계 를 발전시키며 진화해 왔는가를 간략히 설명하고자 한다.

가설 설정

  • 즉, 병원균 의 비병원성 인자의 표적이 되는 식물체의 저항성 관련한 중요 단백질을 guard하고 있는 저항성 유전자는 비병원성 인자에 돌연변이가 생겨도 식물체의 저항성 관련한 중요 단백질을 표적으로 하는 병원성을 유지하는 한 그 식물체 의 집단속에서 선별의 이점에 의해서 계속 존재할 것이다. 단지 물리적인 결합에 의한 인식 능력이 아닌 비병원성 인 자의 병원성에 의해서 발생하는 식물 세포내의 변화를 감 지하는 능력에 의해서 저항성 유전자가 진화 발달한다는 가설은 진화속도가 느린 식물체가 병원균의 빠른 진화 속 도에 대응하면서 저항성을 유지하는 이유를 설명하기에. 적 절하다.
본문요약 정보가 도움이 되었나요?

참고문헌 (71)

  1. Abramovitch RB, Kim Y-J, Chen S, Dickman MB, Matrin GB (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death, EMBO J 22: 60-69 

  2. Abramovitch RB, Matrin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7: 1-9 

  3. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGTl in early R gene-mediated plant defenses. Science 295: 2077-2080 

  4. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112: 369-377 

  5. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RARI interactor SGTl, an essential component of R gene-triggered disease resistance. Science 295: 2073-2076 

  6. Banerjee D, Zhang X, Bent AF (2001) The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2mediated disease resistance. Genetics 158: 439-450 

  7. BeIkhadir Y, Subramanian R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7: 391-399 

  8. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPMldisease resistance gene product is a peripheral plasmamembrane protein that is degraded coincident with thehypersensitive response. Proc. Nat! Acad Sci USA 95: 15849-15854 

  9. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Houb E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidpsis disease resistance. Science 279: 1963-1965 

  10. Cohn J, Sessa G, Martin GB (2001) Innate immunity in plants. Curr Opin Immunol 13: 55-62 

  11. Dangl JL, Jones JDG (2001) Nature 411: 826-833 

  12. Deslandes L, Olivier J, Theulie'res F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRSl-R gene, a member of a novel family of resistance genes. Proc Nat! Acad Sci USA 99: 2404- 2409 

  13. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRSl-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100: 8024-8029 

  14. Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6: 307-311 

  15. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner' JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-Iigase complex in Arabidopsis. Plant J 32: 457-466 

  16. Ellis J, Dodds P (2003) Plant pathology: Monitoring a pathogen-targeted host protein. Curr BioI 13: R400-R4002 

  17. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci in press 10: 71-78 

  18. Falk A, Fets B, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS 1, an essential component of R genemediated disease resistance in Arabidopsis has homology to eukaryotic lipase. Proc Natl Acad Sci USA 96: 3292-3297 

  19. Flor HH (1971) Current status of the gene-for-gene concept. 

  20. Gagne JM, Downes BP, Shiu S-H, Diurskl AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabldopsls, Proc Natl Acad Sci USA 99: 11519-11524 

  21. Hauck P, Thilmony R, He SY (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA 100: 8577-8582 

  22. Hare PD, Seo HS, Yang J-Y, Chua N-H (2003) Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. Curr Opin Plant Biol 6: 1-10 

  23. Holt BF Ill, Hubert DA, Dangl JL (2003) Resistance gene signaling in plants -complex similarities to animal innate immunity. Curr Opin Immunol 15: 20-25 

  24. Hotson A, Mudgett MB (2004) Cystein proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7: 384-390 

  25. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl, Jl (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 21: 5679-5689 

  26. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19: 4004-4014 

  27. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793 

  28. Jones DA, Takemoto D (2004) Plant innate immunity-direct and indirect recognition of general and specific pathogenassociate molecules. Curr Opin lmmunol 16: 48-62 

  29. Joosten MHAJ, Cozijnsen TJ, de Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384-386 

  30. Katagiri F (2004) A global view of defense gene expression regulation - a highly interconneted signaling network. Curr Opin Plant BioI 7: 506-511 

  31. Kruger J, Thomas CM, Golstein C, Dion MS, Smoker M, Jones JDG (2002) A tomato cyctein protease required for Cf-2 dependent disease resistance and suppression of autonecrosis. Science 296: 744-747 

  32. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogens. Curr Opin Plant Biol 5: 325-331 

  33. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDSI and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415-429 

  34. Liu Y, Schiff M, Serino G, Deng X-W, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14: 1483-1496 

  35. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379-389 

  36. Mackey D, Holt BF Ill, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1 mediated resistance in Arabidopsis. Cell 108: 743-754 

  37. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54: 23-61 

  38. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834 

  39. Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21: 4511-4519 

  40. Mou Z, Fan X, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPRI function through redox change. Cell 113: 935-944 

  41. Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RARI exerts ratelimiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14: 979-992 

  42. Nimchuk Z, Eulgem T, Holt III BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37: 579-609 

  43. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao S, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99: 10865-10869 

  44. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580 

  45. Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19: 76-84 

  46. Rivas S, Mucyn T, van den Burg HA, Vervoort J, Jones JDG (2002) An -400 kDA membrane-associated complex that contains one molecule of the resistance protein Cf4. Plant J 29: 783-796 

  47. Schlze-Lefert P (2004) Plant Immunity: The origami of receptor activation. Curr Biol 14: R22-R24 

  48. Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109: 575-588 

  49. Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301: 1230-1233 

  50. Shen Q-H, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/ SGT1 dependence in barley Mia disease resistance genes to the powdery mildew fungus. Plant Cell 15: 732-744 

  51. Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease resistance pathways. Trends Plant Sci 8: 252-258 

  52. Shiu S-H, Bleecker AB (2003) Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132: 530-543 

  53. Song W-Y, Wang G-L, Chen L-L, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806 

  54. Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131-1141 

  55. Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26: 101-112 

  56. Takahashi A, Casais C, Ichimura K, Shirasu K:(2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 20: 11777-11782 

  57. Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC (2002) The tomato R gene products 1-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929-2939 

  58. Tanaka N, Che F-S,Watanabe N, Fujiwara S, Takayama S, Isogai A (2003) Flagellin from an incompatible strain of Acidovorax avenae mediates H2O2 generation accompanying hypersensitive cell death and expression of PAL, Cht-1, and PBZ1, but not of Lox in rice. Mol Plant Microbe Interact 16: 422-428 

  59. Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Katagiri F (2003) Quantitative nature of Arabidopsis response during compatible and incompatible interaction with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317-30 

  60. Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant BioI 6: 351-357 

  61. Tor M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14: 993-1003 

  62. Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14: 1005-1015 

  63. van den Burg HA, Westerink N, Francoijs K-J, Roth R., Woestenenk E, Boeren S, de Wit PJGM, Joosten MHAJ, Vervoort J (2003) Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4mediated resistance, but retain their chitin bindinq, ability. J BioI Chem 278: 27340-27346 

  64. van der Biezen EA, Jones JDG (1998) Plant diseaseresistance proteins and the gene-for-gene concept. Trends Biochem Sci 23: 454-456 

  65. van der Hoorn RA, De Wit PJGM, Joosten MHAJ (2002) Balancing selection favors guarding resistance: proteins. Trends Plant Sci 7: 67-71 

  66. van der Hoorn RA, Jones JDG (2004) The plant proteolytic machinery and its role in defense. Curr Opin Plant Biol 7: 400-407 

  67. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414: 562-565 

  68. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120 

  69. Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520-527 

  70. Zhou J-M, Loh, Y-T, Bressan RA, Martin GB (1995) The tomato gene Pti encodes a serine-threonine kinase that is ohosphorylated by Pto and is involved in the hypersensitive response. Cell 83: 925-935 

  71. Zhou N, Tootle TL, Klessig DF, Glazebrook J (1998) PAD4 functions upstream of salicylic acid to control defenses in Arabidopsis. Plant Cell 10: 1021-1030 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로