$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물바이러스 면역반응 최신 연구 동향 및 전망
Plant Immunity against Viruses: Moving from the Lab to the Field 원문보기

Research in plant disease = 식물병연구, v.24 no.1, 2018년, pp.9 - 25  

김남연 (전남대학교 응용생물학과) ,  홍진성 (강원대학교 응용생물학과) ,  정래동 (전남대학교 응용생물학과)

초록
AI-Helper 아이콘AI-Helper

전 세계적으로 주요 작물에서 기후변화, 무역의 다변화 등 여러 요인에 의해 식물바이러스에 의한 작물 생산량 감소 등의 경제적 손실이 심각하다. 이에 경제 작물에서 심각한 바이러스 병 피해를 줄이기 위한 여러 바이러스에 대한 광범위한 저항성 작물개발이 시급하다. 식물바이러스 병 예방 및 방제를 위해서 지금까지 연구해왔던 바이러스-식물간의 상호작용 기초 연구결과물 뿐만 아니라 식물면역 관련 과학적 방법 종합화를 통한 응용화된 연구 진행이 필요하다. 본 리뷰에서는 바이러스 저항성 작물 도입을 위해 지금까지 연구되어 왔던 식물면역 기작을 소개하고 이를 활용한 작물 개발 사례를 소개하였다. 또한 유전자교정기술과 같은 게놈 공학 기술을 활용한 바이러스 저항성 작물의 필요성과 연구 방향에 대해 기술하였다. 본 리뷰를 통해 현재까지 알려져 있는 바이러스 면역 기작에 대한 이해를 돕고, 최신 바이러스 병방제 기술들을 소개함으로써 농민들뿐만 아니라 연구자들에게도 도움이 되기를 바라며, 식물면역 연구가 작물 재배 중 발생할 수 있는 바이러스 병 농가 피해를 감소시킬 수 있는 효과적인 대응 방안으로 이어지길 바란다.

Abstract AI-Helper 아이콘AI-Helper

Plant viruses cause significant yield losses and continuously threaten crop production, representing a serious threat to global food security. Studies on plant-virus interactions have contributed to increase our knowledge on plant immunity mechanism, providing new strategies for crop improvement. Th...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
바이러스의 식물체 침입 어떠한 문제를 야기하는가? 바이러스의 식물체 침입은 다양한 작물에서 생리적 불균형을 야기시키고 이로인해 크나큰 경제적 손실을 야기하고 있다. 농가에서는 바이러스병 저항성 작물과 다양한 바이러스 방제 방법을 이용해 작물을 재배하고 있다.
식물바이러스 병 방제가 농민,국가,학자,소비자들에게 매우 중요한 문제인 이유는 어떠한 피해를 초래하기 때문인가? 식물바이러스 병 방제는 농민뿐만 아니라 국가, 식물병리학자들, 소비자들에게도 매우 중요한 문제이다. 바이러스병은 전 세계적으로 다양한 작물에서 양적 및 질적으로 큰 피해를 야기하고 있다. 비록 전 세계적으로 바이러스 병에 의한 경제적 손실을 정확히 계산하기는 어렵지만, 매년 발생하는 경제적 손실액은 32조 550억원으로 추정된다(Sastry와 Zitter, 2014).
절대기생체인 식물바이러스는 무엇인가? 절대기생체인 식물바이러스는 기주의 다양한 생리적 기작을 이용하여 복제하고 침입을 한다. 바이러스는 유전적인 측면에서 가장 단순한 구조로 핵산인 DNA 혹은 RNA로 구성되어 있으며 꼭 필요한 소수의 유전자를 만들어 내고 외피단백질(capsid)에 캡슐화(encapsidation) 되어 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (150)

  1. Abe, H., Tomitaka, Y., Shimoda, T., Seo, S., Sakurai, T., Kugimiya, S. et al. 2012. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol. 53: 204-212. 

  2. Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T. et al. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743. 

  3. Ali, S. S., Gunupuru, L. R., Kumar, G. B., Khan, M., Scofield, S., Nicholson, P. et al. 2014. Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biol. 14: 227. 

  4. Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M. M. 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16: 238. 

  5. Ali, Z., Ali, S., Tashkandi, M., Zaidi, S. S. and Mahfouz, M. M. 2016. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci. Rep. 6: 26912. 

  6. Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q. et al. 2012. Structure-function analysis of barley NLR immune receptorMLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog. 8: e1002752. 

  7. Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M. et al. 2015. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1: 15145. 

  8. Barajas, D., Martin, I. F., Pogany, J., Risco, C. and Nagy, P. D. 2014. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of tomato bushy stunt virus replicase. PLoS Pathog. 10: e1004087. 

  9. Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The Rx gene from potato con-trols separate virus resistance and cell death responses. Plant Cell 11: 781-792. 

  10. Bendahmane, A., Querci, M., Kanyuka, K. and Baulcombe, D. C. 2000. Agrobacterium tran-sient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 21: 73-81. 

  11. Blevins, T., Rajeswaran, R., Aregger, M., Borah, B. K., Schepetilnikov, M., Baerlocher, L. et al. 2011. Massive production of small RNAs from a non-coding region of cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res. 39: 5003-5014. 

  12. Bologna, N. G. and Voinnet, O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65: 473-503. 

  13. Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J. et al. 2014. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186: 20-31. 

  14. Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D. et al. 2013. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 51: 177-201. 

  15. Bravo-Almonacid, F., Rudoy, V., Welin, B., Segretin, M. E., Bedogni, M. C., Stolowicz, F. et al. 2012. Field testing, gene flow assessment and pre-commercial studies on transgenic Solanum tuberosum spp. tuberosum (cv. Spunta) selected for PVY resistance in Argentina. Transgenic Res. 21: 967-982. 

  16. Brommonschenkel, S. H., Frary, A., Frary, A. and Tanksley, S. D. 2000. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant-Microbe Interact. 13: 1130-1138. 

  17. Bruun-Rasmussen, M., Moller, I. S., Tulinius, G., Hansen, J. K., Lund, O. S. and Johansen, I. E. 2007. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum. Mol. Plant-Microbe Interact. 20: 1075-1082. 

  18. Calvert, L. A. and Tresh, J. M. 2002. The viruses and virus diseases of cassava. In: Cassava: Biology, Production and Utilization, eds. by R. J. Hillocks, J. M. Thresh and A. C. Bellotti. CABI Publishing, Wallingford. 

  19. Cambra, M., Capote, N., Myrta, A. and Llacer, G. 2006. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36: 202-204. 

  20. Candresse, T., Marais, A., Faure, C., Dubrana, M. P., Gombert, J. and Bendahmane, A. 2010. Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato rx resistance gene in transgenic tomatoes. Mol. Plant-Microbe Interact. 23: 376-383. 

  21. Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K. and Dinesh-Kumar, S. P. 2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132: 449-462. 

  22. Casteel, C., De Alwis, M., Bak, A., Dong, H., Steven, A. and Jander, G. 2015. Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the aphid vector, Myzus persicae. Plant Physiol. 169: 209-218. 

  23. Cavatorta, J., Perez, K. W., Gray, S. M., Van Eck, J., Yeam, I. and Jahn, M. 2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9: 1014-1021. 

  24. Ceasar, S. A., Rajan, V., Prykhozhij, S. V., Berman, J. N. and Ignacimuthu, S. 2016. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta 1863: 2333-2344. 

  25. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M. et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140-1153. 

  26. Chen, L., Zhang, L., Li, D., Wang, F. and Yu, D. 2013. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 110: E1963-E1971. 

  27. Chen, W., Qian, Y., Wu, X., Sun, Y., Wu, X. and Cheng, X. 2014. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 48: 494-501. 

  28. Cheng, X., Li, F., Cai, J., Chen, W., Zhao, N., Sun, Y. et al. 2015. Artificial TALE as a convenient protein platform for engineering broadspectrum resistance to begomoviruses. Viruses 7: 4772-4782. 

  29. Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. 2000. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc. Natl. Acad. Sci. U.S.A. 97: 489-494. 

  30. Choi, S., Nakahara, K., Andrade, M. and Uyeda, I. 2012. Characterization of the recessive resistance gene cyv1 of Pisum sativum against Clover yellow vein virus. J. Gen. Plant Pathol. 78: 269-276. 

  31. Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. and Klessig, D. F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663-676. 

  32. Cosson, P., Schurdi-Levraud, V., Le, Q. H., Sicard, O., Caballero, M., Roux, F. et al. 2012. The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS One 7: e39169. 

  33. Cosson, P., Sofer, L., Le, Q. H., Leger, V., Schurdi-Levraud, V., Whitham, S. A. et al. 2010. RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol. 154: 222-232. 

  34. De Ronde, D., Butterbach, P. and Kormelink, R. 2014. Dominant resistance against plant viruses. Front. Plant Sci. 5: 307. 

  35. Dempsey, D. A. and Klessig, D. F. 2012. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545. 

  36. Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5: 223-233. 

  37. Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G. et al. 2011. The evolutionary genetics of emerging plant RNA viruses. Mol. Plant-Microbe Interact. 24: 287-293. 

  38. Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64: 839-863. 

  39. Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. and Maule, A. J. 2004. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40: 376-385. 

  40. Geri, C., Cecchini, E., Giannakou, M. E., Covey, S. N. and Milner, J. J. 1999. Altered patterns of gene expression in Arabidopsis elicited by cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Mol. Plant-Microbe Interact 12: 377-384. 

  41. Geri, C., Love, A. J., Cecchini, E., Barrett, S. J., Laird, J., Covey, S. N. et al. 2004. Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV infection and show reduced ethylene sensitivity. Plant Mol. Biol. 56: 111-124. 

  42. Gozzo, F. and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agric. Food Chem. 61: 12473-12491. 

  43. Hajimorad, M. R., Eggenberger, A. L. and Hill, J. H. 2005. Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hyper-sensitive response maps to P3. J. Virol. 79: 1215-1222. 

  44. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L. et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945-956. 

  45. Hao, W., Collier, S. M., Moffett, P. and Chai, J. 2013. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J. Biol. Chem. 288: 35868-35876. 

  46. Harper, S. J. 2013. Citrus tristeza virus: evolution of complex and varied genotypic groups. Front. Microbiol. 4: 93. 

  47. Hart, J. P. and Griffiths, P. D. 2013. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to Clover yellow vein virus in common bean. Theor. Appl. Genet. 126: 2849-2863. 

  48. Hofinger, B. J., Russell, J. R., Bass, C. G., Baldwin, T., dos Reis, M., Hedley, P. E. et al. 2011. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20: 3653-3668. 

  49. Hsu, P. D., Lander, E. S. and Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-1278. 

  50. Hull, R. 2013. Plant Virology. 5th ed. Academic Press, New York. 

  51. Hwang, J., Oh, C. S. and Kang, B. C. 2013. Translation elongation factor 1B (eEF1B) is an essential host factor for tobacco mosaic virus infection in plants. Virology 439: 105-114. 

  52. Hyodo, K., Mine, A., Taniguchi, T., Kaido, M., Mise, K., Taniguchi, H. et al. 2013. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J. Virol. 87: 163-176. 

  53. Ishibashi, K. and Ishikawa, M. 2013. The resistance protein Tm-1 inhibits formation of a tomato mosaic virus replication proteinhost membrane protein complex. J. Virol. 87: 7933-7939. 

  54. Ishibashi, K., Masuda, K., Naito, S., Meshi, T. and Ishikawa, M. 2007. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc. Natl. Acad. Sci. U.S.A. 104: 13833-13838. 

  55. Ishibashi, K., Miyashita, S., Katoh, E. and Ishikawa, M. 2012. Host membrane proteins involved in the replication of tobamovirus RNA. Curr. Opin. Virol. 2: 693-698. 

  56. Jakubiec, A., Yang, S. W. and Chua, N. H. 2012. Arabidopsis DRB4 protein in antiviral defense against turnip yellow mosaic virus infection. Plant J. 69: 14-25. 

  57. Jeong, R. D., Chandra-Shekara, A. C., Barman, S. R., Navarre, D., Klessig, D. F., Kachroo, A. et al. 2009. Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 107: 13538-13543. 

  58. Ji, X., Zhang, H., Zhang, Y., Wang, Y. and Gao, C. 2015. Establishing a CRISPRCas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1: 15144. 

  59. Jiang, L., Qian, D., Zheng, H., Meng, L. Y., Chen, J., Le, W. J. et al. 2012. RNA dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, rice stripe virus. Virus Res. 163: 512-519. 

  60. Kang, B. C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43: 581-621. 

  61. Kang, B. C., Yeam, I., Li, H., Perez, K. W. and Jahn, M. M. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants, Plant Biotechnol. J. 5: 526-536. 

  62. Kanyuka, K., Druka, A., Caldwell, D. G., Tymon, A., McCallum, N., Waugh, R. et al. 2005. Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol. Plant Pathol. 6: 449-458. 

  63. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A. et al. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4: 205-217. 

  64. Kazan, K. and Lyons, R. 2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26: 2285-2309. 

  65. Kim, S.-B., Kang, W.-H., Huy, H. N., Yeon, S.-I., An, J.-T., Kim, S. et al. 2017. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. New Phytol. 213: 886-899. 

  66. King, A. M. Q., Adams, M. J., Carsterns, E. B. and Lefkowitz, E. 2012. Virus Taxonomy: Claassification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego. 

  67. Kosaka, Y., Ryang, B.-S., Katagiri, N. and Yasuhara, H. 2009. Development and diffusion of CUBIO ZY-02, a water-soluble formulation of an attenuated zucchini yellow mosaic virus isolate, for the control of cucumber mosaic disease. In: Proceedings of PSJ Biocontrol Workshop, vol. 11, pp. 63-72. Yamagata. 

  68. Koshino-Kimura, Y., Takenaka, K., Domoto, F., Aoyama, Y. and Sera, T. 2008. Generation of plants resistant to tomato yellow leaf curl virus by using artificial zinc-finger proteins. Nucleic Acids Symp. Ser. (Oxf.) 52: 189-190. 

  69. Koshino-Kimura, Y., Takenaka, K., Domoto, F., Ohashi, M., Miyazaki, T., Aoyama, Y. et al. 2009. Construction of plants resistant to TYLCV by using artificial zinc-finger proteins. Nucleic Acids Symp. Ser. (Oxf.) 53: 281-282. 

  70. Lanfermeijer, F. C., Dijkuis, J., Sturre, M. J., de Haan, P. and Hille, J. 2003. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycoperscion esculentum. Plant Mol. Biol. 52: 1037-1049. 

  71. Lanfermeijer, F. C., Warmink, J. and Hille, J. 2005. The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J. Exp. Bot. 56: 2925-2933. 

  72. Lee, R. F. and Keremane, M. L. 2013. Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 4: 259. 

  73. Legg, J. P. and Thresh, J. M. 2000. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Res. 71: 135-149. 

  74. Lemgo, G. N. Y., Sabbadini, S., Pandolfini, T. and Mezzetti, B. 2013. Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock. Transgenic Res. 22: 1073-1088. 

  75. Li, F., Huang, C., Li, Z. and Zhou, X. 2014a. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 10: e1003921. 

  76. Li, Z., Gonzalez, P. A., Sasvari, Z., Kinzy, T. G. and Nagy, P. D. 2014b. Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology 448: 43-54. 

  77. Liu, P.-P., Yang, Y., Pichersky, E. and Klessig, D. F. 2010. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMPtriggered immunity in Arabidopsis. Mol. Plant-Microbe Interact. 23: 82-90. 

  78. Liu, Y., Schiff, M., Marathe, R. and Dinesh-Kumar, S. P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30: 415-429. 

  79. Love, A. J., Geri, C., Laird, J., Carr, C., Yun, B. W., Loake, G. J. et al. 2012. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7: e47535. 

  80. Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C. et al. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3: 16207. 

  81. Moffett, P. 2009. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 75: 1-33. 

  82. Moissiard, G. and Voinnet, O. 2006. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc. Natl. Acad. Sci. U.S.A. 103: 19593-19598. 

  83. Mori, T., Takenaka, K., Domoto, F., Aoyama, Y. and Sera, T. 2013. Inhibition of binding of tomato yellow leaf curl virus rep to its replication origin by artificial zinc-finger protein. Mol. Biotechnol. 54: 198-203. 

  84. Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M. P., Mazier, M., Maison-neuve, B. et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol. 132: 1272-1282. 

  85. Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B. et al. 2006. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48: 452-462. 

  86. Nishiguchi, M. and Kobayashi, K. 2011. Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J. Gen. Plant Pathol. 77: 221-229. 

  87. Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C. et al. 2014. Cloning of the Arabidopsis rwm1 gene for resistance to watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. 79: 705-716. 

  88. Padmanabhan, M. S., Shiferaw, H. and Culver, J. N. 2006. The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol. Plant-Microbe Interact 19: 864-873. 

  89. Perez, K., Yeam, I., Kang, B. C., Ripoll, D. R., Kim, J., Murphy, J. F. et al. 2012. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg. Mol. Plant-Microbe Interact. 25: 1562-1573. 

  90. Piatek, A. and Mahfouz, M. M. 2017. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit. Rev. Biotechnol. 37: 429-440. 

  91. Pumplin, N. and Voinnet, O. 2013. RNA silencing suppression by plant pathogens: defence, counter-defense and counter-counter-defense. Nat. Rev. Microbiol. 11: 745-760. 

  92. Pyott, D. E., Sheehan, E. and Molnar, A. 2016. Engineering of CRISPR/Cas9- mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17: 1276-1288. 

  93. Qu, F., Ye, X. and Morris, T. J. 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl. Acad. Sci. U.S.A. 105: 14732-14737. 

  94. Quenouille, J., Montarry, J., Palloix, A. and Moury, B. 2013. Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol. Plant Pathol. 14: 109-118. 

  95. Rai, M. 2006. Refinement of the Citrus tristeza virus resistance gene (Ctv) positionalmap in Poncirus trifoliata and generation of transgenic grapefruit (Citrus para-disi) plant lines with candidate resistance genes in this region. Plant Mol. Biol. 61: 399-414. 

  96. Robert-Seilaniantz, A., Grant, M. and Jones, J. D. G. 2011. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu. Rev. Phytopathol. 49: 317-343. 

  97. Rodriguez, M. C., Conti, G., Zavallo, D., Manacorda, C. A. and Asurmendi, S. 2014. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol. 14: 210. 

  98. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32: 1067-1075. 

  99. Ruffel, S., Gallois, J. L., Lesage, M. L. and Caranta, C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genomics 274: 346-353. 

  100. Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. 2006. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87: 2089-2098. 

  101. Sanfacon, H. 2015. Plant translation factors and virus resistance. Viruses 7: 3392-3419. 

  102. Sansregret, R., Dufour, V., Langlois, M., Daayf, F., Dunoyer, P., Voinnet, O. et al. 2013. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog. 9: e1003435. 

  103. Sasaya, T., Nakazono-Nagaoka, E., Saika, H., Aoki, H., Hiraguri, A., Netsu, O. et al. 2013. Transgenic strategies to confer resistance against viruses in rice plants. Front. Microbiol. 4: 409. 

  104. Sastry, S. K. and Zitter, T. A. 2014. Management of virus and viroid diseases of crops in the tropics. In: Plant Virus and Viroid Diseases in the Tropics, vol. 2, pp. 149-480. Springer, Dordrecht. 

  105. Seo, J.-K., Kwon, S.-J., Cho, W. K., Choi, H.-S. and Kim, K.-H. 2014. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci. Rep. 4: 5905. 

  106. Seo, Y. S., Jeon, J. S., Rojas, M. R. and Gilbertson, R. L. 2007. Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in com-mon bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Mol. Plant Pathol. 8: 151-162. 

  107. Seo, Y. S., Rojas, M. R., Lee, J. Y., Lee, S. W., Jeon, J. S., Ronald, P. et al. 2006. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl. Acad. Sci. U.S.A. 103: 11856-11861. 

  108. Sera, T. 2005. Inhibition of virus DNA replication by artificial zinc finger proteins. J. Virol. 79: 2614-2619. 

  109. Shimizu, T., Nakazono-Nagaoka, E., Akita, F., Uehara-Ichiki, T., Omura, T. and Sasaya, T. 2011. Immunity to rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res. 160: 400-403. 

  110. Soosaar, J. L. M., Burch-Smith, T. M. and Dinesh-Kumar, S. P. 2005. Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 3: 789-798. 

  111. Sovova, T., Kerins, G., Demnerova, K. and Ovesna, J. 2016. Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Curr. Issues Mol. Biol. 21: 41-62. 

  112. Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12: 89-100. 

  113. Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S. et al. 2005. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42: 912-922. 

  114. Stella, S. and Montoya, G. 2016. The genome editing revolution: a CRISPRCas TALE off-target story. Bioessays 38: S4-S13. 

  115. Szajko, K., Chrzanowska, M., Witek, K., Strzelczyk-Zyta, D., Zagorska, H., Geb-hardt, C. et al. 2008. The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theor. Appl. Genet. 116: 297-303. 

  116. Takahashi, H., Miller, J., Nozaki, Y., Takeda, M., Shah, J., Hase, S. et al. 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32: 655-667. 

  117. Takenaka, K., Koshino-Kimura, Y., Aoyama, Y. and Sera, T. 2007. Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins. Nucleic Acids Symp. Ser. (Oxf.) (51):429-430. 

  118. Takeshita, M., Okuda, M., Okuda, S., Hyodo, A., Hamano, K., Furuya, N. et al. 2013. Induction of antiviral responses by acibenzolar-smethyl against cucurbit chlorotic yellows virus in Melon. Phytopathology 103: 960-965. 

  119. Taki, A., Yamagishi, N. and Yoshikawa, N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res. 176: 251-258. 

  120. Tameling, W. I. L., Nooijen, C., Ludwig, N., Boter, M., Slootweg, E., Goverse, A. et al. 2010. RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22: 4176-4194. 

  121. Tamura, A., Kato, T., Taki, A., Sone, M., Satoh, N., Yamagishi, N. et al. 2013. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections. Virology 446: 314-324. 

  122. Tenllado, F., Llave, C. and Diaz-Ruiz, J. R. 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102: 85-96. 

  123. Thresh, J. M. and Cooter, R. J. 2005. Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol. 54: 587-614. 

  124. Tomita, R., Murai, J., Miura, Y., Ishihara, H., Liu, S., Kubotera, Y. et al. 2008. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theor. Appl. Genet. 117: 1107-1118. 

  125. Tran, P.-T., Choi, H., Choi, D. and Kim, K.-H. 2015. Molecular characterization of Pvr9 that confers a hypersensitive response to Pepper mottle virus (a potyvirus) in Nicotiana benthamiana. Virology 481: 113-123. 

  126. Trejo-Saavedra, D. L., Garcia-Neria, M. A. and Rivera-Bustamante, R. F. 2013. Benzothiadiazole (BTH) induces resistance to pepper golden mosaic virus (PepGMV) in pepper (Capsicum annuum L.). Biol. Res. 46: 333-340. 

  127. Ueda, H., Yamaguchi, Y. and Sano, H. 2006. Direct interaction between the tobacco mosaic virus helicase domain and the ATPbound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol. Biol. 61: 31-45. 

  128. Vallejos, C. E., Astua-Monge, G., Jones, V., Plyler, T. R., Sakiyama, N. S. and Macken-zie, S. A. 2006. Genetic and molecular characterization of the locus of Phaseolus vulgaris. Genetics 172: 1229-1242. 

  129. Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G. F., Scott, J. W. et al. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA-dependent RNA polymerases. PLoS Genet. 9: e1003399. 

  130. Voinnet, O. 2001. RNA silencing as a plant immune system against viruses. Trends Genet. 17: 449-459. 

  131. Wagner, S., Stuttmann, J., Rietz, S., Guerois, R., Brunstein, E., Bautor, J. et al. 2013. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14: 619-630. 

  132. Wang, A. and Krishnaswamy S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13: 795-803. 

  133. Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X. et al. 2011. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23: 1625-1638. 

  134. Wang, X., Goregaoker, S. P. and Culver, J. N. 2009. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J. Virol. 83: 9720-9730. 

  135. Whitham, S. A., Anderberg, R. J., Chisholm, S. T. and Carrington, J. C. 2000. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12: 569-582. 

  136. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and theinterleukin-1 receptor. Cell 78: 1101-1115. 

  137. Whitham, S., McCormick, S. and Baker, B. 1996. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. U.S.A. 93: 8776-8781. 

  138. Woo, J. W., Kim, J., Kwon, S. I., Corvalan, C., Cho, S. W., Kim, H. et al. 2015. DNA-free genome editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nat. Biotechnol. 33: 1162-1164. 

  139. Yamaji, Y., Maejima, K., Ozeki, J., Komatsu, K., Shiraishi, T., Okano, Y. et al. 2012. Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell 24: 778-793. 

  140. Yang, P., Perovic, D., Habekub, A., Zhou R., Graner A., Ordon, F. et al. 2013. Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol. Breed. 32: 27-37. 

  141. Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G. and Kwon, S. Y. 2014. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9: e88951. 

  142. Zagrai, I., Capote, N., Ravelonandro, M., Cambra, M., Zagrai, L. and Scorza, R. 2008. Plum pox virus silencing of C5 transgenic plums is stable under challenge inoculation with heterologous viruses. J. Plant Pathol. 90: S1-S63. 

  143. Zhang, X., Singh, J., Li, D. and Qu, F. 2012. Temperature-dependent survival of turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J. Virol. 86: 6847-6854. 

  144. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K. et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7: 12617. 

  145. Zhao, D. and Song, G. Q. 2014. Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol. J. 12: 1319-1328. 

  146. Zhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C. et al. 2005. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol. 139: 1935-1945. 

  147. Zhu, S., Jeong, R. D., Lim, G. H., Yu, K., Wang, C., Chandra-Shekara, A. C. et al. 2013. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Rep. 4: 1168-1184. 

  148. Zhu, S., Jeong, R. D., Venugopal, S. C., Lapchyk, L., Navarre, D., Kachroo, A. et al. 2011. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog. 7: e1002318. 

  149. Ziebell, H. and Carr, J. P. 2010. Cross-protection: a century of mystery. Adv. Virus Res. 76: 211-264. 

  150. Ziebell, H., Murphy, A. M., Groen, S. C., Tungadi, T., Westwood, J. H., Lewsey, M. G. et al. 2011. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1: 187. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로