$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Intratumoral Administration of Rhenium-188-Labeled Pullulan Acetate Nanoparticles (PAN) in Mice Bearing CT-26 Cancer Cells for Suppression of Tumor Growth 원문보기

Journal of microbiology and biotechnology, v.16 no.10, 2006년, pp.1491 - 1498  

Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Hospital) ,  Na, Kun (Division of Biotechnology, The Catholic University of Korea) ,  Park, Keun-Hong (College of Medicine, Pochon CHA University, Cell and Gene Therapy Research Institute) ,  Shin, Chan-Ho (Department of Nuclear Medicine, Chonnam National University Hospital) ,  Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University Hospital) ,  Kang, Dong-Min (Korea Basic Science Institute, Chuncheon Center) ,  Kim, Sung-Won (Biomedical Research Center, Korea Institute of Science and Technology) ,  Lee, Eun-Seong (Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah) ,  Lee, Don-Haeng (Department of Internal Medicine, Inha University)

Abstract AI-Helper 아이콘AI-Helper

The feasibility of pullulan acetate nanoparticles (PAN) with ionic strength (IS) sensitivity as a radioisotope carrier to inhibit tumor growth is demonstrated. PAN was radiolabeled with rhenium 188 (Re-188) without any chelating agents. The labeling efficiency of Re-188 into PAN (Re-188PAN) was

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • of a radioisotope in the target site and organ. In this paper, we biggest a new concept for the intratumoral delivery of radioisotopes using a self-assembled nanoparticle with ionic strength (IS)-sensitivity in the body condition. The IS-sensitive nanoparticles might exist as a stable state in distilled water (D.
  • The purpose of this study was to develop a stimuli sensitive nanoparticle for an effective radiotherapy of solid tumor. The carrier with a radioisotope was expected to stay in the tumor mass when injected directly into the tumor, because the carrier might be aggregated inside the tumor (IS=0.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Blower, P. J., A. S. Lam, M. J. O'Doherty, A. G. Kettle, A. J. Coakley, and F. F Jr. Knapp. 1998. Pentavalent rhenium-188 dimercaptosuccinic acid for targeted radiotherapy: Synthesis and preliminary animal and human studies. Eur. J. Nucl. Med. 25: 613-621 

  2. Cammas, S., K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, and T. Okano. 1997. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site specific drug carriers. J. Control. Release 48: 157-164 

  3. Chung, J. E., M. Yokoyama, and T. Okano. 2000. Inner core segment design for delivery control of thermo-responsive polymeric micelles. J. Control. Release 65: 93-103 

  4. Crudo, J. L., M. M. Edreira, E. R. Obenaus, M. Chinol, G. Paganelli, and S. G. de Castiglia. 2002. Optimization of antibody labeling with rhenium-188 using a prelabeled $MAG_3$ chelate. Int. J. Pharm. 248: 173-182 

  5. Deutsch, E., K. Libson, J. L. Vanderheyden, A. R. Ketring, and H. R. Maxon. 1986. The chemistry of rhenium and technetium as related to use of isotope of these elements in therapeutic and diagnostic nuclear medicine. Int. J. Radiat. Appl. Instrum. B 13: 465-477 

  6. El-Mabhouh, A. and J. R. Mercer. 2005. 188Re-labeled bisphosphonates as potential bifunctional agents for therapy in patients with bone metastases. Appl. Radiat. Isot. 62: 541-549 

  7. Friesen, C., A. Lubatschofski, J. Kotzerke, I. Buchmann, S. N. Reske, and K. M. Debatin. 2003. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur. J. Nucl. Med. Mol. Imaging 30: 1251-1261 

  8. Jeong, J. M., Y. J. Lee, Y. J. Kim, Y. S. Chang, D. S. Lee, J. K. Chung, et al. 2000. Preparation of rhenium-188-tin colloid as a radiation synovectomy agent and comparison with rhenium-188-sulfur colloid. Appl. Radiat. Isot. 52: 851-855 

  9. Juweid, M., R. M. Sharkey, L. C. Swayne, G. L. Griffiths, R. Dunn, and D. M. Goldenberg. 1998. Pharmacokinetics, dosimetry and toxicity of rhenium-188-labeled anti-carcinoembryonic antigen monoclonal antibody, MN-14, in gastrointestinal cancer. J. Nucl. Med. 39: 34-42 

  10. Knapp, F. F Jr., A. L. Beets, S. Guhlke, P. O. Zamora, H. Bender, and H. Palmedo. 1997. Availability of rhenium-188 from the alumina-based tungsten-188/rhenium-188 generator for preparation of rhenium-188-labeled radiopharmaceuticals for cancer treatment. Anticancer Res. 17: 1783-1795 

  11. Kim, C.-H. 2004. Glycoantigen biosyntheses of human hepatoma and colon cancer cells are dependent on different N-acetylglucosaminyltransferase-III and V activities. J. Microbiol. Biotechnol. 14: 891-900 

  12. Lee, J. D., W. I. Yang, M. G. Lee, Y. H. Ryu, J. H. Park, K. H. Shin, et al. 2002. Effective local control of malignant melanoma by intratumoural injection of a beta-emitting radionuclide. Eur. J. Nucl. Med. Mol. Imaging 29: 221-230 

  13. Lee, E. S., K. Na, and Y. H. Bae. 2003. Polymeric micelle for tumor pH and folate mediated targeting. J. Control. Release 91: 103-113 

  14. Lee, I. and Y. H. Lee. 1999. The effect of various therapeutic solutions including colloidal chromic $^{32}P$ via an intratumoral injection on the tumor physiological parameters of AsPC-1 human pancreatic tumor xenografts in nude mice. Clin. Cancer Res. 5: 3139-3142 

  15. Liepe, K., J. Kropp, R. Runge, and J. Kotzerke. 2003. Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br. J. Cancer 89: 625-629 

  16. Lin, W. Y., S. C. Tsai, J. F. Hsieh, and S. J. Wang. 2000. Effects of $^{90}Y$ -microspheres on liver tumors: Comparison of intratumoral injection method and intra-arterial injection method. J. Nucl. Med. 41: 1892-1897 

  17. Na, K., E. S. Lee, and Y. H. Bae. 2003. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Control. Release 87: 3-13 

  18. Na, K., K. H. Lee, and Y. H. Bae. 2004. pH-Sensitivity and pH-dependent interior structure change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo(methacryloyl sulfadimethoxine) (PA/OSDM) conjugates. J. Control. Release 97: 513-525 

  19. Na, K., T. B. Lee, K.-H. Park, E.-K. Shin, and H.-K. Choi. 2003. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur. J. Pharm. Sci. 18: 165-173 

  20. Na, K. and Y. H. Bae. 2002. Self-assembled hydrogel nanoparticles responsive to tumor extracelluar pH from hydrophobized pullulan and sulfonamide conjugate; Characterization, aggregation and adriamycin release in vitro. Pharm. Res. 19: 681-688 

  21. Nakajo. M., H. Kobayashi, K. Shimabukuro, K. Shirono, H. Sakata, and M. Taguchi. 1988. Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J. Nucl. Med. 29: 1066-1077 

  22. Palmedo, H., S. Guhlke, H. Bender, J. Sartor, G. Schoeneich, and J. Risse. 2000. Dose escalation study with rhenium-188 hydroxyethylidene diphosphonate in prostate cancer patients with osseous metastases. Eur. J. Nucl. Med. 27: 123-130 

  23. Reske, S. N., D. Bunjes, I. Buchmann, U. Seitz, G. Glatting, B. Neumaier, et al. 2001. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur. J. Nucl. Med. 28: 807-815 

  24. Seo, M. H., J.-H. Lee, M. S. Kim, H. K. Chae, and H. Myung, 2006. Selection and characterization of peptides specifically binding to $TiO_2$ nanoparticles. J. Microbiol. Biotechnol. 16: 303-307 

  25. Seong, S. K., J. M. Ryu, D. H. Shin, E. J. Bae, A. Shigematsu, Y. Hatori, J. Nishigaki, C. Kwak, S. E. Lee, and K. B. Park. 2005. Biodistribution and excretion of radioactivity after the administration of 166Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur. J. Nucl. Med. Mol. Imaging 32: 910-917 

  26. Shon, Y.-H., K.-S. Nam, and M.-K. Kim, 2004. Cancer chemopreventive potential of Scenedesmus spp. cultured in medium containing bioreacted swine urine. J. Microbiol. Biotechnol. 14: 158-161 

  27. Suzuki, Y. S., Y. Momose, N. Higashi, A. Shigematsu, K. B. Park, Y. M. Kim, J. R. Kim, and J. M. Ryu. 1998. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J. Nucl. Med. 39: 2161-2166 

  28. Tian, J. H., B. X. Xu, J. M. Zhang, B. W. Dong, P. Liang, and X. D. Wang. 1996. Ultrasound-guided internal radiotherapy using yttrium-90-glass microspheres for liver malignancies. J. Nucl. Med. 37: 958-963 

  29. Tomayko, M. M. and C. P. Reynolds. 1989. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24: 148-154 

  30. Wang, S. J., W. Y. Lin, M. N. Chen, C. S. Chi, J. T. Chen, and W. L. Ho. 1998. Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma. J. Nucl. Med. 39: 1752-1757 

  31. Yuen, S. 1974. Pullulan and its applications. Process Biochem. 9: 7-22 

  32. Zweit, J. 1996. Radionuclides and carrier molecules for therapy. Phys. Med. Biol. 41: 1905-1914 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로