$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CFD-FEA ANALYSIS OF HYDRAULIC SHOCK ABSORBER VALVE BEHAVIOR 원문보기

International journal of automotive technology, v.8 no.5, 2007년, pp.615 - 622  

Shams, M. (Mechanical Engineering, Department, K.N.Toosi University of Technology) ,  Ebrahimi, R. (Mechanical Engineering, Department, K.N.Toosi University of Technology) ,  Raoufi, A. (Mechanical Engineering, Department, K.N.Toosi University of Technology) ,  Jafari, B.J. (Research and Development Department, Indamin Saipa Shock Absorber Mfg. Co.)

Abstract AI-Helper 아이콘AI-Helper

In this study, a Coupled Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) method are used to predict and evaluate the performance of an automotive shock absorber. Averaged Navier-Stokes equations are solved by the SIMPLE method and the RNG $k-\varepsilon$ is used to mode...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, a simulation method for estimating the performance of an automotive shock absorber is developed. A numerical scheme based on the CFD is used to determine the flow characteristics of a hydraulic val.

이론/모형

  • ,e pressure/flow characterizations. The pressure models are a selection of first order non-linear differential equations that are utilized to determine the various internal chamber pressures and are derived from pressure dependent oil compressibility models.
  • The flow governing equations are solved with FLUENT™ (1998). The velocity and pressure coupling used the SIMPLE algorithm. RNG k-£ model is used to model turbulence.
  • The CFD modeling involves the numerical solution of the conservation equations in the laminar and turbulent fluid flow regimes. Therefore, the theoretical predictions were obtained by simultaneous sohition of the continuity and the Reynolds averaged Navier-Stokes (RANS) equations. The governing equations for an incompressible flow were:
본문요약 정보가 도움이 되었나요?

참고문헌 (16)

  1. Baracat, D. E. (1993). A proposal for mathematical design of shock absorbers. SAE Paper No. 931691 

  2. Dixon, J. C. (1999). The Shock Absorber Handbook. SAE R-176. Society of Automotive Engineers. Warrendale, Pa 

  3. Duym, S. (2000). Simulation tools, modelling and identification, for an automotive shock absorber in the context of vehicle dynamics. Vehicle System Dynamics 33, 4, 261-289 

  4. Duym, S. and Reybrouck, K. (1998). Physical Characterization of nonlinear shock absorber dynamics. European J. Mechanical Engineering 43, 4, 181-188 

  5. FLUENT User Guide (1998). Fluent Incorporated, Centerra Resources Park, 10 Cavendish Court, Lebanon, NH 03766 

  6. Herr, F., Mallin, T., Lane, J. and Roth, S. (1999). A shock absorber model using CFD analysis and easy 5. SAE Steering and Suspension Technology Symp., Detroit, Michigan, 267-281 

  7. Krakov, M. S. (1999). Influence of rheological properties of magnetic fluid on damping ability of magnetic fluid shock absorber. J. Magnetism and Magnetic Materials, 201, 368-371 

  8. Lee, C. T. and Moon, B. Y. (2005). Study of the simulation model of a displacement-sensitive shock absorber of a vehicle by considering the fluid force. J. Automobile Engineering, 219, 965-975 

  9. Lee, C. T. and Moon, B. Y. (2006). Simulation and experimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling, Mechanical Systems and Signal Processing, 20, 373-388 

  10. Morinaga, H., Kuboto, M. and Kume, H. (1997). Mechanism analysis of shock absorber rattling noise. J. SAE Review 18, 2, 198-198 

  11. Purdy, D. J. (2000). Theoretical and experimental investigation into an adjustable automotive damper. Proc. Institution of Mechanical Engineers, Part D, J. Automobile Engineering 214, 3, 265-283 

  12. Reybrouck, K. (1994). A nonlinear parametric model of an automotive shock absorber. SAE Paper No. 9400869 

  13. Reybrouck, K. and Duym, S. (1998). A physical and parametric model for nonlinear dynamic and temperature-dependant behaviour of automotive shock absorbers. Proc. 11th ADAMS Users Conf., Frankfurt 

  14. Surace, C., Worden, K. and Tomlinson, G. R. (1992). An improved nonlinear model for an automotive shock absorber. Nonlinear Dynamics 3, 6, 413-429 

  15. Tallec, P. L. and Mouro, J. (2001). Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering, 190, 3039-3067 

  16. Yakhot, V. and Orszag, S. A. (1986). Renormalization group analysis of turbulence I; Basic Theory. J. Sci. Comput., 1, 1-51 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로