$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Caking in Food Powders 원문보기

Food science and biotechnology, v.16 no.3 = no.75, 2007년, pp.329 - 336  

Ruan, Roger (Department of Bioproducts and Biosystems Engineering, University of Minnesota) ,  Choi, Young-Jin (Department of Food Science and Biotechnology, Seoul National University) ,  Chung, Myong-Soo (Department of Food Science and Technology, Ewha Womans University)

Abstract AI-Helper 아이콘AI-Helper

Caking has been a serious problem in food, feed, pharmaceutical, and related industries, where dry powdered materials are produced and/or utilized. Caking of dry food powders occurs when water is redistributed or absorbed by the powders during processing and storage. The powders become sticky when t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

이론/모형

  • Determination of collapse temperature (surface caking temperature) The ampule method was developed by Tsourouflis et al. (12) for measrin the collapse temperature of dried food powders. One to two g of sample from each storage condition is placed into 2-mL glass ampules which are flame-sealed.
본문요약 정보가 도움이 되었나요?

참고문헌 (73)

  1. Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56: 3843 (1991) 

  2. Peleg M. Physical characteristics of food powders. pp. 293-323. In: Physical Properties of Food. Peleg M, Bagley EB (eds). AVI, Westport, CT, USA (1983) 

  3. Burak N. Chemicals for improving the flow properties of powders. Chem. Ind. -London 1: 844-850 (1966) 

  4. Peleg M, Mannheim CH. The mechanism of caking of powdered onion. J. Food Process Pres. 1: 3-11 (1977) 

  5. Saltmarch M, Labuza TP. Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders. J. Food Sci. 45: 1231-1236 (1980) 

  6. Hersey JA. Ordered mixing: a new concept in powder mixing practice. Powder Technol. 11: 41-45 (1975) 

  7. Hersey JA, Thiel WJ, Yeung CC. Partially ordered randomized powder mixtures. Powder Technol. 24: 251-256 (1979) 

  8. Egermann H, Orr NA. Ordered mixtures-interactive mixtures. Powder Technol. 36: 117-118 (1983) 

  9. Peleg M. Glass transitions and the physical stability of food powders. pp. 435-451. In: The Glassy State in Foods. Blanshard JMV, Lillford PJ (eds). Nottingham Univ. Press, Nottingham, UK (1993) 

  10. Isengard H-D. Rapid water determination in foodstuffs. Trends Food Sci. Tech. 6: 155-162 (1995) 

  11. Lazar ME, Brown AH, Smith GS, Wong FF, Lindquist FE. Experimental production of tomato powder by spray drying. Food Technol.-Chicago 10: 129-134 (1956) 

  12. Tsourouflis S, Flink JM, Karel M. Loss of structure in freeze dried carbohydrate solutions. Effect of temperature, moisture contents, and composition. J. Sci. Food Agr. 27: 509-519 (1976) 

  13. Chuy LE, Labuza TP. Caking and stickiness of dairy-based food powders as related to glass transition. J. Food Sci. 59: 43-46 (1994) 

  14. Roos Y, Karel M. Applying state diagrams to food processing and development. Food Technol.-Chicago 45: 66, 68-71, 107 (1991) 

  15. Chinachoti P. Water mobility and it relation to functionality of sucrose-containing food systems. Food Technol.-Chicago 47: 134-140 (1993) 

  16. Schenz TW. Glass transitions and product stability - an overview. Food Hydrocolloid 9: 307-315 (1995) 

  17. Roos Y, Karel M, Kokini JL. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol.-Chicago 50: 95-108 (1996) 

  18. Rogers DE, Doescher LC, Hoseney RC. Textural characteristics of reheated bread. Cereal Chem. 67: 188-191 (1990) 

  19. Caldwell KB, Goff HD, Maurice TJ. The use of thermal mechanical analysis to determined the influence of carbohydrates on stability of frozen dairy products. J. Dairy Sci. 73: 95 (1990) 

  20. Levine H, Slade L. Cryostabilization technology: Thermoanalytical evaluation of food ingredients and systems. pp. 221-305. In: Thermal Analysis of Foods. Harwalker VR, Ma CY (eds). Elsevier Applied Science, London, UK (1990) 

  21. George RM. Freezing processes used in the food industry. Trends Food Sci. Tech. 4: 134-138 (1993) 

  22. Noel TR, Ring SG, Whittam MA. Glass transition in low-moisture foods. Trends Food Sci. Tech. 1: 62-67 (1990) 

  23. Hartel RW, Shastry AY. Sugar crystallization in food products. Crit. Rev. Food Sci. 30: 49-112 (1991) 

  24. Jouppila K, Roos YH. Water sorption and time-dependent phenomena of milk powders. J. Dairy Sci. 77: 1798-1808 (1994) 

  25. Jouppila K, Roos YH. Glass transition and crystallization in milk powders. J. Dairy Sci. 77: 2907-2915 (1994) 

  26. Slade L, Levine H. Beyond water activity: Recent advances based on alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. 30: 115-360 (1991) 

  27. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2: 493-500 (1952) 

  28. Roos Y, Karel M. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Progr. 7: 49-53 (1991) 

  29. Couchman PR, Karasz FE. A classical thermodynamic discussion of the effect of composition on glass transition temperatures. Macromolecules 11: 117-119 (1978) 

  30. Kokini JL, Cocero AM, Madeka H, De Graaf E. The development of state diagrams for cereal proteins. Trends Food Sci. Tech. 5: 281-288 (1994) 

  31. White GW, Cakebread SH. The glassy state in certain sugar-containing food products. Food Technol.-Chicago 1: 73-82 (1966) 

  32. To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - I. Evaluation of analytical methods. Food Technol.-Chicago 13: 551-565 (1978) 

  33. To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - II. Effect of solute composition. Food Technol.-Chicago 13: 567-581 (1978) 

  34. To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - III. Prerequisite of recrystallization. Food Technol.-Chicago 13: 583-594 (1978) 

  35. Flink JM. Structure and structure transitions in dried carbohydrate materials. pp. 473-521. In: Physical Properties of Foods. Peleg M, Bagley EB (eds). AVI, Westport, CT, USA (1983) 

  36. Brennan JG, Herrera J, Jowitt G. A study of some of the factors affecting the spray drying of concentrated orange juice, on a laboratory scale. Food Technol.-Chicago 6: 295-307 (1971) 

  37. Wallack DA, King CJ. Sticking and agglomeration of hygroscopic, amorphous carbohydrate and food powders. Biotechnol. Progr. 4: 31-35 (1988) 

  38. Hoseney RC, Zeleznak K, Lai CS. Wheat gluten: a glassy polymer. Cereal Chem. 63: 285-286 (1986) 

  39. Zelenznak KJ, Hoseney RC. The glass transition in starch. Cereal Chem. 64: 121-124 (1987) 

  40. Kopelman IJ, Meydav S, Weinberg S. Storage studies of freeze dried lemon crystals. Food Technol.-Chicago 12: 403-410 (1977) 

  41. Dziedzic SZ, Kearsley MW. pp. 137-168. In: Glucose Syrup: Science and Technology. Dziedzic SZ, Kearsley MW (eds). Elsevier, New York, NY, USA (1984) 

  42. Aguilera JM, Levi G, Karel M. Effect of water content on the glass transition and caking offish protein hydrolyzates. Biotechnol. Progr. 9: 651-654 (1993) 

  43. Hamano M, Sugimoto H. Water sorption, reduction of caking and improvement of free flowingness of powdered soy sauce and miso. 1. Food Process Pres. 2: 185-196 (1978) 

  44. Anjum FM, Walker CE. Review on the significance of starch and protein to wheat kernel hardness. J. Sci. Food Agr. 56: 1-13 (1991) 

  45. Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng. 37: l77-184 (1991) 

  46. Aguilera JM, del Valle JM, Karel M. Caking phenomena in amorphous food powders. Trends Food Sci. Tech. 6: 149-155 (1995) 

  47. Peleg M. On the use of the WLF model in polymers and foods. Crit. Rev. Food Sci. 32: 59-66 (1992) 

  48. Soesanto T, Williams MC. Volumetric interpretation of viscosity for concentrated and dilute sugar solutions. J. Phys. Chem.-US 85: 3338-3341 (1981) 

  49. Buera M del P, Karel M. Application of the WLF equation to describe the combined effects of moisture and temperature on nonenzymatic browning rates in food systems. J. Food Process Pres. 17: 31-45 (1993) 

  50. Levi G, Karel M. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res. Int. 28: 145-151 (1995) 

  51. Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Phys. Chem.-US 77: 3701-3707 (1955) 

  52. Roos Y. Characterization of food polymers using state diagram. J. Food Eng. 24: 339-360 (1994) 

  53. Peleg M, Hollenbach AM. Flow conditioners and anticaking agents. Food Technol.-Chicago 38: 93-102 (1984) 

  54. Peleg M, Mannheim CH, Passy N. Flow properties of some food powders. J. Food Sci. 38: 959-964 (1973) 

  55. Barbosa-Canovas G, Malave-Lopez J, Peleg M. Density and R. Ruan et al. compressibility of selected food powders mixtures. J. Food Process Eng. 10: 1-19 (1987) 

  56. Kim M. Effect of soluble starch pretreatment and storage condition on caking degree and moisture sorption of powdered onion. J. Korean Soc. Food Sci. 20: 272-275 (1991) 

  57. Moreyra R, Peleg M. Effect of equilibrium water activity on the bulk properties of selected food powders. J. Food Sci. 46: 1918-1922 (1981) 

  58. Lloyd RJ, Chen XD, Hargreaves JB. Glass transition and caking of spray-dried lactose. Int. J. Food Sci. Technol. 31: 305-311 (1966) 

  59. Lai H-M, Schmidt SJ. Lactose crystallization in skim milk powder observed by hydrodynamic equilibria, scanning electron microscopy and $^2H$ nuclear magnetic resonance. J. Food Sci. 55: 994-999 (1990) 

  60. Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J. Agr. Fooel Chem. 34: 6-14 (1986) 

  61. Lemeste M, Huang VT, Panama J, Anderson G, Lentz R. Glass transition of bread. Cereal Food World 37: 264-267 (1992) 

  62. Cocero AM, Kokini JL. The study of the glass transition of glutenin using small amplitude oscillatory rheological measurements and differential scanning calorimetry. J. Rheol. 35: 257-270 (1991) 

  63. Anglea SA, Karathanos V, Karel M. Low-temperature transition in fresh and osmotically dehydrated plant materials. Biotechnol. Prog. 9: 204-209 (1993) 

  64. Williams RJ. Methods for determination of glass transitions in seeds. Ann. Bot. -London 74: 525-530 (1994) 

  65. Chung MS, Ruan RR, Chen PL, Wang X. Physical and chemical properties of caramel systems. Lebensm.-Wiss. Technol. 32: 162-166 (1999) 

  66. Roosen MJGW, Hemminga MA, Walstra P. Molecular motion in glassy water-malto-oligosaccharide (maltodextrin) mixtures as studied by conventional and saturation-transfer spin-probe e.s.r. spectroscopy. Carbohyd. Res. 215: 229-237 (1991) 

  67. Kalichevisky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ. The glass transition of amylopectin measured by DSC, DMTA, and NMR. Carbohyd. Polym. 18: 77-88 (1992) 

  68. Long Z. Study of the glass transition using pulsed nuclear magnetic resonance (NMR). MS thesis, Department of Biosystems and Agricultural Engineering, University of Minnesota, St. Paul, MN, USA (1996) 

  69. Chung MS, Kim SH, Park KM. Observation of molecular relaxation behavior of powdered carbohydrates using low field nuclear magnetic resonance (NMR). Food Sci. Biotechnol. 11: 665-672 (2002) 

  70. Chung MS, Ruan RR. Storage temperature dependence on caking of food powders. Food Sci. Biotechnol. 11: 566-569 (2002) 

  71. Chung MS, Ruan RR, Chen PL, Chung SH, Ahn TH, Lee KH. Study of caking in powdered foods using nuclear magnetic resonance spectroscopy. J. Food Sci. 65: 134-138 (2000) 

  72. Chung MS, Ruan RR, Chen P, Kim JH, Ahn TH, Baik CK. Predicting caking behavior in powdered foods using low field nuclear magnetic resonance (NMR) technique. Lebensm.-Wiss. Technol. 36: 751-761 (2003) 

  73. Chung MS, Ruan RR, Chen PL, Lee YG, Ahn TH, Baik CK. Formulation of caking-resistant powdered soups based on NMR analysis. J. Food Sci. 66: 1147-1151 (2001) 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로