$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계
The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications 원문보기

자원환경지질 = Economic and environmental geology, v.40 no.5, 2007년, pp.517 - 535  

최선규 (고려대학교 지구환경과학과) ,  박상준 (고려대학교 지구환경과학과)

초록
AI-Helper 아이콘AI-Helper

중생대부터 한반도에서 나타나는 열수계는 쥐라기/전기 백악기 (약 $200{\sim}130$ Ma) 심부지질환경과 관련된 조산대형 열수계와 후기 백악기/제3기 (약 $110{\sim}45$ Ma) 천부지질환경의 후조산대형 열수계로 구분된다. 이러한 열수계에 수반된 금속광화작용은 시 공간적 관점에서 조산대형 및 후조산대형 화성활동의 특성을 반영하고 있다. 그리고 각 유형 광화유체의 ${\delta}^{18}O_{H2O}$는 쥐라기 조산대형 광상에 비하여 후기 백악기 후조산대형 광상에서 현저한 조성변화를 보이고 있다. 즉, 조산대형 광상은 경기 영남 육괴에 배태되며, 심부 지질조건에서 균질한 $^{18}O$-부화된 고온성 광화유체로부터 진화된 열수충진형 금광상과 희유금속 광상으로 인접한 대보화강암체 또는 분화된 페그마타이트로부터 유입된 마그마수 또는 일부 변성수로부터 유도되었다. 반면에 후기 백악기 광상은 태백산분지, 옥천 지향사대 및 경상분지의 전 지역에 걸쳐 광범위하게 산출되며, 철합금, 비철금속 및 귀금속 광상의 열수충진형, 열수교대형, 각력 파이프형, 반암형, 스카른형 광상과 같은 다양한 광상유형으로 배태되고 있다. 이러한 다양한 유형의 광화유체는 물-암석 반응에 따라 산소 동위원소비$({\delta}^{18}O)$가 폭 넓게 변화하는 산소 편이의 전형적인 특징을 보이는 반면 수소 동위원소비$({\delta}D_{H2O})$는 비교적 균질한 조성특징을 나타내고 있다. 또한 근지성 유형 광상의 산소 동위원소비는 부화된 경향을 보이지만, 점이성/원지성 유형 광상에서는 전반적으로 폭 넓게 변화하며 부분적으로 결핍된 특징을 보이고 있다. 즉 근지성 유형의 Cu(-Au)또는 Fe-Mo-W 광상에서는 탈가스화작용 이후에 나타나는 마그마수의 전형적인 특징을 보이는 반면, 다금속 광상과 귀금속 광상은 점이성 또는 원지성 유형으로 지표수(또는 순환수)의 혼입이 우세한 경향을 보인다.

Abstract AI-Helper 아이콘AI-Helper

Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The M...

주제어

참고문헌 (74)

  1. Cerny, P. (1993) Rare-element granitic pegmatites: Part II, Regional to global environments and petrogenesis, In Sheahan, P.A. and Cherry, P. (Eds.) Ore deposit models. Geological Association of Canada, Geoscience Canada Reprint Series, v. 6, p. 49-62 

  2. Chang, K.H., Filatova, N.E. and Park, S.O. (1999) Upper Mesozoic stratigraphic synthesis of Korean Peninsula. Econ. Env. Geol., v. 32, p. 353-363 

  3. Cho, D. R. and Kwon, S. T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. J. Geol. Soc. Korea, v. 30, p. 41-61 

  4. Choi, S.-G., Pak, S.J., Kim, C.S., Ryu, I.-C. and Wee, S.M. (2006a) The origin and evolution of mineralizing fluids in the Cretaceous Gyeongsang Basin, southeastern Korea. J. Geochem. Explor., v. 89, p. 61-64 

  5. Choi, S.-G., Pak, S.J., Kim, S.W, Kim, C.S. and Oh, C.-W. (2006b) Mesozoic gold-silver mineralization in south Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Env. Geol., v. 39, p. 567-581 

  6. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.M., Kim, C.S. and Park, M.E. (2005) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Review, v. 26, p. 115-135 

  7. Choi, S.H., Yun, S.T., and So, C.S. (1996) Fluid inclusion and stable isotopes studies of gold-and silver-bearing vein deposits, South Korea: Geochemical of a Tebearing Au-Ag-mineralization of the Imcheon mine. N. Jb. Miner. Abh., v. 1, p. 33-59 

  8. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean Peninsula: A review and new view. Earth Sci. Review, v. 52, p. 175-235 

  9. Cluzel, D., Jolivet, L. and Cadet, J.-P. (1991) Early middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea): A new insight on the Paleozoic buildup of east Asia. Tectonics, v. 10, p. 1130-1151 

  10. Corbett, G.J. and Leach, T.M. (1998) Geothermal environment for southwest Pacific Rim gold-copper systems. In Corbett, G.J., Leach, T.M., (Eds.) Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Econ. Geol. Special Pub., no 6, p. 11-30 

  11. Friedman, I. and O'Neil, J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest, In Fleischer, M. (ed.) Data of geochemistry: U.S. Geological Survey Professional Paper, 440-K, p. 1-12 

  12. Goldfarb, R.J., Phillips, G.N. and Nokleberg, W.J. (1998) Tectonic setting of synorogenic gold deposits of the Pacific rim. Ore Geol. Review, v. 13, p. 185-218 

  13. Hart, C.J.R, Mair, J.L., Goldfarb, R.J. and Groves, D.I. (2004) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. Trans. of the Royal Society of Edinburgh, Earth Sciences, v. 95, Part 1/2, p. 339-356 

  14. Hedenquist, J.W. and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits, Nature, v. 370, p. 519-527 

  15. Heo, C.H., So, C.S., Youm, S.J. and Kim, S.H. (1999) Oxygen and hydrogen isotope study of the gold-silver mines in the Boseong-Jangheung area, Chollanamdo province, Korea. J. Korean Inst. Min. Energy Res. Eng., v. 36, p. 404-411 

  16. Heo, C.H., Yun, S.T., So, C.S. and Choi, S.-G. (2001) Mesothermal gold mineralization at Seolhwa mine, Asan district: Oxygen and hydrogen isotope studies. J. Korean Inst. Min. Energy Res. Eng., v. 38, p. 405-415 

  17. Hong, S.S. (2001) Implication for the emplacement depth of granites in the Yeongnam Massif, using the aluminum-in-hornblende barometry. J. Petro. Soc. Korea, v. 10, p. 36-55 

  18. Hong, S.S. and Cho, D.R. (2003) Late mesozoic-Cenozoic tectonic evolution of Korea (3). KIGAM, KR-03-01, p. 455-526 

  19. Jin, M.S., Lee, Y.S. and Ishihara, S. (2001) Granitoids and their magnetic susceptibility in South Korea. Resource Geol., v. 51, p. 189-204 

  20. Jwa, Y.J. (1998) Temporal, spatial and geochemical discriminations of granitoids in south Korea. Resource Geol., v. 47, p. 273-284 

  21. Jwa, Y.J. (2004) Possible source rocks of Mesozoic granites in South Korea: implications for crustal evolution in NE Asia. Trans. of the Royal Society of Edinburgh Earth Sciences, v. 95, p. 181-195 

  22. Kim, K.H. and Cheong, H.R. (1999) Gas and solute compositions in quartz from some base-metal ore deposits, South Korea. Econ. Env. Geol., v. 32, p. 421-439 

  23. Kim, K.H. and Nakai, N. (1988) Isotopic compositions of precipitations and groundwaters in South Korea. J. Geol. Soc. Korea, v. 24, p. 37-46 

  24. Kim, K.H., Kim, O.J. and Chang, W.S. (1990) Stable isotope and fluid inclusion studies of the Mugug Au-Ag mineral deposits. Econ. Env. Geol., v. 23, p. 1-9 

  25. Kim, K.H., Kim, O.J., Nakai, N. and Lee, H.J. (1988) Stable isotope studies of the Sangdong tungsten ore deposits, South Korea. Mining Geol., v. 38, p. 473-487 

  26. Kim, K.H., Satake, H. and Mizutani, Y. (1992) Oxygen isotopic compositions of Mesozoic granitic rocks in South Korea. Mining Geol., v. 42, p. 311-322 

  27. Kim, O.J. (1971) Metallogenic epochs and provinces of South Korea. J. Geol. Soc. Korea, v. 7, p. 37-59 

  28. Kim, S.J., Lee, H.K., Yu, J.-H. and Chon H.-T. (1999) Gold-silver mineralization of the Mujeong mine, Korea. Econ. Env. Geol., v. 32, p. 237-245 

  29. Kim, S.S. and Kim, J.J. (1995) Fluid inclusion and stable isotope studies of the Kwangyang gold-silver mineral deposits, the southern part of the Korean peninsula. J. Geol. Soc. Korea, v. 31, p. 431-443 

  30. Koh, S.M., Tagaki, T., Kim, M.Y., Naito, K., Hong, S.S. and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geol., v. 50, p. 229-242 

  31. Lang, J.R. and Baker, T. (2001) Intrusion-related-gold-systems: the present level of understanding, Min. Deposita, v. 36, p. 477-489 

  32. Lang, J.R., Baker, T., Hart, C.J.R. and Mortensen, J.K. (2000) An exploration model for intrusion-related gold systems: Society of Econ. Geol. Newsletter, No. 40, p. 1-15 

  33. Lee, D.S. (1987) Geology of Korea, Kyohaksa, Seoul, 514 p 

  34. Lee, H.K., Yoo, B.C. and Kim, S.J. (1995) Au-Ag minerals and genetic environments from the Yeongdeog gold-silver deposits, Korea. Econ. Env. Geol., v. 28, p. 541-551 

  35. Lee, J. I. and Kusakabe, M. (1998) Hydrogen and oxygen isotope compositions of the granitic rocks in the southern part of the Kyeongsang Basin, Korea, Geochem. J., v. 32, p. 253-256 

  36. Lee, S.Y., Choi, S.-G., So, C.S., Ryu, I.-C., Wee, S.-M. and Heo, C.-H. (2003) Base-metal mineralization in the Cretaceous Gyeongsang Basin and its genetic implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong metallogenic provinces. Econ. Env. Geol., v. 36, p. 257-268 

  37. Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartzalbite-anorthite-water. Geochem. Cosmochim. Acta., v. 43, p. 1131-1140 

  38. McConachie, B.A. and Dunster, J.N. (1996) Sequence stratigraphy of the Bowthorn block in the northern Mount Isa basin, Australia: Implications for the base metal mineralization process. Geology, v. 24, p. 155-158 

  39. McCoy, D., Newberry, R.J., Layer, P., DiMarchi, J.J., Bakke, A., Masterman, J.S., and Minehane, D.L. (1997) Plutonic-related gold deposits of interior Alaska, In Goldfarb, R.J., and Miller, L.D. (Eds.) Mineral deposits of Alaska: Econ. Geol. Mono., v. 9, p. 191-241 

  40. Moon, S.H., Park, H., Ripley, E.M. and Hur, S.D. (1998) Petrochemistry and stable isotopes of granites around the Eonyang rock crystal deposits. J. Geol. Soc. Korea, v. 34, p. 211-227 

  41. Oh, M.S. (1999) Mineralization in Korea. In Cheong, C.H. (Ed.) Geology of Korea. Sigma Press, Seoul. p. 523-605 

  42. Pak, S. J. Choi, S.-G. and Choi, S. H. (2004) Systematic mineralogy and chemistry of gold-silver vein deposits in the Taebaeksan district in Korea: Distal relatives of a porphyry system. Min. Mag., v. 68, p. 467-487 

  43. Pak, S.J., Choi, S.-G., Oh, C.W., Heo, C.H., Choi, S.H. and Kim, S.W. (2006) Genetic environment of the intrusion-related Yuryang Au-Te deposit in the Cheonan metallogenic province, Korea. Resource Geol., v. 56, p. 117-132 

  44. Park, H.I., Chang, H.W. and Jin, M.S. (1988a) K-Ar ages of mineral deposits in the Taebaeg Mountain district. J. Korean Inst. Mining Geol., v. 21, p. 57-67 

  45. Park, H.I., Chang, H.W. and Jin, M.S. (1988b) K-Ar ages of mineral deposits in the Gyeonggi massif. J. Korean Inst. Mining Geol., v. 21, p. 349-358 

  46. Park, H.I., Choi, S.W., Chang, H.W. and Chae, D.H. (1985) Copper mineralization at Haman-Gunbuk mining district, Kyeongnam area. J. Korean Inst. Mining Geol., v. 18, p. 107-124 

  47. Park, H.I., Choi, S.W., Chang, H.W. and Lee, M.S. (1983) Genesis of the copper deposits in Goseong district, Gyeongnam Area. J. Korean Inst. Mining Geol., v. 16, p. 135-147 

  48. Park, Y.-R. and Ko, B. (2004) Oxygen and hydrogen isotopic compositions of the Hwacheon granite. J. Petro. Soc. Korea, v. 13, p. 214-223 

  49. Ryu, I.-C., Choi, S.-G. and Wee, S.-M. (2006) An Inquiry into the formation and deformation of the Cretaceous Gyeongsang Basin, Southeastern Korea. Econ. Env. Geol., v. 39, p. 129-149 

  50. Shelton, K.L. and So, C.S. (1992) A hydrogen and oxygen isotope study of the Sambo Pb-Zn-Barite mine, Republic of Korea. Mining Geol., v. 42, p. 353-359 

  51. Shelton, K.L., So, C.S. and Chang, J.S. (1988) Gold-rich mesotherma1 vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Econ. Geol., v. 83, p. 1221-1237 

  52. Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae Hwa Tungsten-Molybdenum mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ. Geol., v. 82, p. 471-481 

  53. Shimazaki, H., Lee, M.S., Tsusue, A. and Kaneda, H. (1986) Three epochs of gold mineralization in South Korea. Mining Geol., v. 36, p. 265-272 

  54. Shin, S.C. and Chi, S.J. (1996) Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive isotopes and fission track II. KIGAM, Daejeon, KR-95C-11, p. 86 

  55. Simmons, S.F. and Graham, I. (2003) Volcanic, Geothermal, Ore-forming Fluids: Rulers and Witnesses of Processes within the Earth. Econ. Geol. Special Pub., no. 10, 343 p 

  56. So, C.S. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing hydrothermal vein deposits, Cheonan-Cheongyang- Nonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., v. 82, p. 987-1000 

  57. So, C.S. and Yun, S.T. (1992) Geochemistry and genesis of hydorthermal Au-Ag-Pb-Zn deposits in the Hwanggangri mineralized district, Republic of Korea. Econ. Geol., v. 87, p. 2056-2084 

  58. So, C.S. and Yun, S.T. (1994) Origin and evolutioin of W-Mo-Producing fluids in a granitic hydorthermal system: Geochemical studies of quartz vein deposits around the Susan granite, Hwanggangri distirct, Republic of Korea. Econ. Geol., v. 89, p. 246-267 

  59. So, C.S. and Yun, S.T. (1996) Geochemical evidence of progressive meteoric water interaction in epithermal Au-Ag mineralization, Jeongju-Buan district. Republic of Korea. Econ. Geol., v. 91, p. 636-646 

  60. So, C.S. and Yun, S.T. (1997) Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea: Geochemistry of magmatic-hydrothermal gold deposition. Econ. Geol., v. 92, p. 60-80 

  61. So, C.S., Chi, S.J. and Choi, S.H. (1988) Geochemical studies on Au-Ag hydorthermal vein deposits, Republic of Korea: Jinan-Jeongeup mineralized area. J. Min. Pet. Econ. Geol., v. 83, p. 449-471 

  62. So, C.S., Chi, S.J. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing vein deposits, Cheonan-Cheongyang-Nonsan mining deistirict, Republic of Korea: Nonsan area. N. Jb. Miner. Abh., v. 158, p. 47-65 

  63. So, C.S., Choi, S.H., Lee, K.-Y. and Shelton, K.L. (1989) Geochemical studies of hydrothermal gold deposits, Republic of Korea: Yangpyeong-Weonju area. J. Korean. Inst. Mining. Geol., v. 22, p. 1-16 

  64. So, C.S., Yun, S.T. and Koh, Y.-K. (1993a) Mineralogic, fluid inclusion and stable isotope evidence for the genesis of carbonate-hosted Pb-Zn(-Ag) orebodies of the Taebaek deposit, Republic of Korea. Econ. Geol., v. 88, p. 855-872 

  65. So, C.S., Yun, S.T. and Lee, J.-H. (1993b) Hydorhtemal W-Mo mineralziation of the Cheongyang mine, Republic of Korea: A fluid inclusion and stable isotope study. J. Min. Pet. Econ. Geol., v. 88, p. 63-82 

  66. So, C.S., Yun, S.T., Choi, S.G., Koh, Y.K. and Chi, S.J. (1991) Gretaceous epithermal Au-Ag mineralization in the Muju-Yeongam distirict(Jeongju mineralized area), Republic of Korea: Galena-Lead and stable isotope studies. J. Geol. Soc. Korea. v. 27, p. 569-586 

  67. So, C.S., Yun, S.T., Kwon, S.H. (1999) Gold-silver mineralization of the Jungheung and Okdong mines, Kwangyang area, Korea: Mineralogical and geochemical change in a cooling hydrothermal system. N. Jb. Miner. Abh., v. 174, p. 223-248 

  68. Williams, P.J. and Barton, M.D. and Johnson, D.A. (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Economic Geology 100th Anniversary, p. 371-406 

  69. Yang, D.Y. (1991) Mineralogy, petrology and geochemistry of the magnesian skarn-type magnetite deposits at the Shinyemi Mine, Republic of Korea. Ph.D thesis, Waseda Univ., Tokyo, Japan. 323 p 

  70. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Econ. Env. Geol., v. 35, p. 299-316 

  71. Yoo, B.C., Lee, H.K. and Kim, S.J. (2003) Stable isotope and fluid inclusioin studies of the Daebong gold-silver deposit, Republic of Korea. Econ. Env. Geol., v. 36, p. 391-405 

  72. Yoo, B.C., Lee, H.K. and Kim, K.J. (2006a) Ore minerals and genetic environments from the Baekun gold-silver deposit, Republic of Korea. Econ. Env. Geol., v. 39, p. 9-25 

  73. Yoo, B.C., Lee, H.K. and White, N.C. (2006b) Gold-bearing mesothermal veins from the Gubong mine, Cheongyang gold distirict, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol., v. 101, p. 883-901 

  74. Yun, S.T., So, C.S., Choi, S.H. and Heo, C.H. (2001) Hydrothermal bismuth mineralization of the Yucheon mine, South Korea: Oxygen and hydrogen isotope study. Geoscience J., v. 5, p. 243-250 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로