$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 그 활성이 조절되는 HCV지놈 표적 Hammerhead 리보자임 개발
Development of Hepatitis C Virus (HCV) Genome-Targeting Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase 원문보기

Korean journal of microbiology = 미생물학회지, v.43 no.3, 2007년, pp.159 - 165  

이창호 (단국대학교 자연과학부 분자생물학전공 나노센서 바이오텍연구소) ,  이성욱 (단국대학교 자연과학부 분자생물학전공 나노센서 바이오텍연구소)

초록
AI-Helper 아이콘AI-Helper

C형 간염바이러스(hepatitis C virus; HCV)증식을 효과적이며 특이적으로 제어할 수 있는 유전산물을 개발하기 위하여 HCV 중식조절이자인 NS5B RNA replicase 존재에 의해 allosteric하게 그 활성 이 조절될 수 있는 HCV internal ribosome entry site (IRES) 표적 hammerhead 리보자임을 개발하였다. 우선 HCV IRES 염기서열 중+382 nucleotide(nt) 부위가 리보자임에 의해 가장 잘 인식되었음을 관찰하였다. 이러한 allosteric 리보자임은 NS5B RNA replicase와 특이적으로 결합하는 RNA aptamer 부위, aptamer와 NS5B와의 결합에 의해 리보자임 활성을 유도할 수 있도록 구조적 변이를 전달할 수 있는 communication module부위 및 HCV IRES의 +382 nt를 인지하는 hammerhead 리보자임 등으로 구성되도록 설계하였다. 특히 in vitro selection기법을 활용하여 NS5B 의존적으로 리보자임 활성을 증가시킬 수 있는 communication module 염기서열을 밝혀내었다. 이러한 리보자임은 단백질이 없거나 대조 단백질인 bovine serum albumin이 존재할 때에는 절단반응을 유도하지 못하였으나 HCV NS5B 단백질이 존재할 매에만 효과적으로 NS5B 농도 의존적으로 절단 반응을 유도할 수 있음을 관찰하였다. 이러한 allosteric 리보자임은 HCV중식의 효과적인 증식 억제 선도물질 뿐만 아니라 HCV 치료선도물질의 스크리닝용 도구 및 HCV 조절 인자를 탐색할 수 있는 HCV 진단용 리간드로서도 활용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

For the development of basic genetic materials for specific and effective therapeutic approach to suppress multiplication of hepatitis C virus (HCV), HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA r...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • HCV IRES는 복잡한 2차 구조를 가지고 있기 때문에 (Fig. 1A), IRES의 어느 부위가 hammerhead 리보자임에 가장 접근성이 용이한 부위인지 찾고자 하였다. 195, 199, 326, 382번째 nt 를 표적하는 야생형의 hammerhead 리보자임을 제작하였다.
  • 최근 리보자임의 기질 결합 부위 또는 catalytic core부위에 aptan血er와 같이 특정 ligand와 결합하는 부위를 join시 특정 ligand의 결합에 의해 리보자임 구조적 변이를 유발함으로써 리보자임 활성이 allosteric 하게 증가 또는 저해될 수 있는 allosteric 리보자임이 개발되고 있다(3, 26). 본 연구에서는 HCV의 비구조 단백질인 NS5B에 대한 aptamer를 hammerhead 리보자임의 catalytic core 부위에 결합함으로써 NS5B 단백질에 의해 활성이 조절되는 allosteric 리보자임을 개발하였다. 이러한 allosteric 리보자임은 aptame의 가역적인 표적 결합 능력과 hammerhead ribozyme의 비가역적인 표적 RNA에 대한 cleavage 활성이 더해진 새로운 개념의 항 HCV 억제제로서 사용 가능할 것이다.
  • 본 연구에서는 aptamer의 가역적인 표적 분자 인지 능력 및 표적 분자의 활성 억제 능력을 hammerhead 리보자임의 비가역적인 표적 RNA 절단 능력과 결합하여 새로운 개념의 항 HCV 억제제를 개발하고자 하였다. 이러한 새로운 개념의 RNA 분자를 개발하기 위해 우선 HCV의 IRES 염기서열 중 어느 부위가 가장 hammerhead 리보자임에 의해 반응이 용이한 부위인지 탐색하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Ali, N. and A. Siddiqui. 1995. Interaction of polypyrimidine tractbinding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. virol. 69, 6367-6375 

  2. Anwar, A., N. Ali, R. Tanveer, and A. Siddiqui. 2000. Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J. Biol. Chem. 275, 34231-34235 

  3. Araki, M., Y. Okuno, Y. Hara, and Y. Sugiura. 1998. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379-3384 

  4. Biroccio, A.,J. Hamm, I. Incitti, R. De Francesco, and L. Tomei. 2002. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. virol. 76, 3688-3696 

  5. Breaker, R.R. 2002. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31-39 

  6. Cheng, J.C., M.E. Chang, and S.C. Chang. 1999. Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3' end of the virol RNA. J.Virol. 73, 7044-7049 

  7. Chevalier, C., A. Saulnier, Y. Benureau, D. Flchet, D. Delgrange, F. Colbre-Garapin, C. Wychowski, and A. Martin. 2007. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol. Ther. 15, 1452-1462 

  8. Choo, Q.L., G. Kuo, A.J. Weiner, L.R. Overby, D.W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B virol hepatitis genome. Science 244, 359-362 

  9. Hahm, B., D.S. Han, S.H. Back, O.K. Song, M.J. Cho, C.J. Kim, K. Shimotohno, and S.K. Jang. 1995. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J. Virol. 69,2534-2539 

  10. Hammann, C. and D.M. Lilley. 2002. Folding and activity of the hammerhead ribozyme. Chembiochem. 3, 690-700 

  11. Hanecak, R., V. Brown-Driver, M.C. Fox, R.F. Azad, S. Furusako, C. Nozaki, C. Ford, H. Sasmor, and K.P. Anderson. 1996. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J. Virol. 70, 5203-5212 

  12. Hartig, J.S., S.H. Najafi-Shoushtari, I. Grune, A Yan, A.D. Ellington, and M. Famulok. 2002. Protein-dependent ribozyrnes report molecular interactions in real time. Nat. Biotechnol. 20, 717-722 

  13. Hino, K., S. Sainokami, K. Shimoda, S. lino, Y. Wang, H. Okamoto, Y. Miyakawa, and M. Mayurni. 1994. Genotypes and titers of hepatitis C virus for predicting response to interferon in patients with chronic hepatitis C. J. Med. virol. 42, 299-305 

  14. Honda, M., M.R. Beard, L.H. Ping, and S.M. Lemon. 1999. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent virol translation. J. virol. 73, 1165-1174 

  15. Hwang, B., J.S. Cho, H.J. Yeo, J.H. Kim, K.M. Chung, K. Han, S.K. Jang, and S.W. Lee. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277-1290 

  16. Johnson, R.B., X.L. Sun, M.A. Hockman, E.C. Villarreal, M. Wakulchik, and Q.M. Wang. 2000. Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase. Arch. Biochem. Biophys. 377, 129-134 

  17. Jopling, C.L., M.K. Yi, A.M. Lancaster, S.M. Lemon, and P. Sarnow. 2005. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577-1581 

  18. Kapadia, S.B., A. Brideau-Andersen, and F.V. Crusan. 2003. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl Acad. Sci. USA. 100, 2014-2018 

  19. Kertsburg, A. and G.A. Soukup. 2002. A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30, 4599-4606 

  20. Kolykhalov, A.A., K. Mihalik, S.M. Feinstone, and C.M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J virol. 74, 2046-2051 

  21. Krutzfeldt, J., N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, and M. Stoffel. 2005. Silencing ofmicroRNAs in vivo with 'antagomirs'. Nature 438, 685-689 

  22. Kuo, G., Q.L. Choo, H.J. Alter, G.L. Gitnick, A.G. Redeker, R.H. Purcell, T. Miyamura, J.L. Dienstag, M.J. Alter, and C.E. Stevens. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364 

  23. Lohmann, V., F. Komer, J.O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110-113 

  24. Macejak, D.G., K.L. Jensen, S.F. Jamison, K. Domenico, E.C. Roberts, N. Chaudhary, I. von Carlowitz, L. Bellon, MJ. Tong, A. Conrad, P.A. Pavco, and L.M. Blatt. 2000. Inhibition of hepatitis C virus (HCY)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776 

  25. Pagliaro, L., A. Craxi, C. Cammaa, F. Tine, V. Di Marco, L. Iacono, and P. Almasio. 1994. Interferon-alpha for chronic hepatitis C: an analysis of pretreatment clinical predictors of response. Hepatology 19, 820-828 

  26. Penchovsky, R. and R.R. Breaker. 2005. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23, 1424-1433 

  27. Roth, A. and R.R. Breaker. 2004. Selection in vitro of allosteric ribozymes. Methods Mol. BioI. 252, 145-164 

  28. Ryu, K.J., J.H. Kim, and S.W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386-395 

  29. Saito, I., T. Miyamura, A. Ohbayashi, H. Harada, T. Katayama, S. Kikuchi, Y. Watanabe, S. Koi, M. Onji, Y. Ohta, Q. Choo, M. Houghton, and G. Kuo. 1990. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl. Acad Sci. USA 87, 6547-6549 

  30. Sakamoto, N., C.H. Wu, and G.Y. Wu. 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of virol protein translation by hammerhead ribozymes. J. Clin. Invest. 98, 2720-2728 

  31. Tuerk, C. and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510 

  32. Vaish, N.K., F. Dong, L. Andrews, R.E. Schweppe, N.G. Ahn, L. Blatt, and S.D. Seiwert. 2002. Monitoring post-translational modification of proteins with allosteric ribozymes. Nat. Biotechnol. 20, 810-815 

  33. Zivarts, M., Y. Liu, and R.R. Breaker. 2005. Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 33, 622-631 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로