$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Role of Water in Bread Staling: A Review 원문보기

Food science and biotechnology, v.17 no.6, 2008년, pp.1139 - 1145  

Choi, Young-Jin (Department of Food Science and Biotechnology, Seoul National University) ,  Ahn, Soon-Cheol (Department of Microbiology and Immunology, and Medical Research Institute, Pusan National University College of Medicine) ,  Choi, Hyun-Shik (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University) ,  Hwang, Duck-Ki (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University) ,  Kim, Byung-Yong (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University) ,  Baik, Moo-Yeol (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)

Abstract AI-Helper 아이콘AI-Helper

Bread is an essential food consumed worldwide. Bread rapidly loses its desirable texture and flavor qualities associated with freshness through a process known as staling. The shelf life of bread is limited by this staling leading to economical losses in the range of one billion dollars per year. Th...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In the previous article, textural analysis for bread staling has been summarized and discussed (1). This review focuses on the role of water on bread staling and analytical methodology for water dynamics in bread staling.
본문요약 정보가 도움이 되었나요?

참고문헌 (63)

  1. Chung M-S, Lee J-K, Hur N-Y, Kim D-S, Baik M-Y. Textural analysis for bread staling. Food Sci. Biotechnol. 12: 727-736 (2003) 

  2. Rao PA, Nussinovitch A, Chinachoti P. Effects of selected surfactants on amylopectin recrystallization and recoverability of breadcrumb during storage. Cereal Chem. 69: 613-618 (1992) 

  3. Vodovotz Y, Vittadini E, Coupland J, McClements DJ, Chinachoti P. Bridging the gap: Use of Confocal Microscopy in Food Research. Food Technol. -Chicago 50: 74-82 (1996) 

  4. Vodovotz Y, Chinachoti P. Visualization of white bread with a confocal microscope. Am. Lab. 31: 46-51 (1999) 

  5. Piazza L, Masi P. Moisture redistribution throughout the bread loaf during staling and its effect on mechanical properties. Cereal Chem. 72: 320-325 (1995) 

  6. He H, Hoseney RC. Changes in bread firmness and moisture during long-term storage. Cereal Chem. 67: 603-605 (1990) 

  7. Vodovotz Y, Hallberg L, Chinachoti P. Effect of aging and drying on thermomechanical properties of white bread as characterized by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Cereal Chem. 73: 264-270 (1996) 

  8. Scoch TJ, French D. Studies on bread staling. I. The role of starch. Cereal Chem. 24: 231-249 (1947) 

  9. Zobel HF, Senti FR. The bread staling problem. X-ray diffraction studies on breads containing a cross-linked starch and heat stable amylase. Cereal Chem. 36: 441-451 (1959) 

  10. Dragsdorf RD, Varriano-Marston E. Bread staling: X-ray diffraction studies on bread supplemented with ${\alpha}-amylases$ from different sources. Cereal Chem. 57: 310-314 (1980) 

  11. Ghiasi K, Hoseney RC, Zeleznak K, Rogers DE. Effect of barley starch and reheating on firmness of bread crumb. Cereal Chem. 61: 281-285 (1984) 

  12. Rogers DE, Zeleznak KJ, Lai CS, Hoseney RC. Effect of native lipids, shortening, and bread moisture on bread firming. Cereal Chem. 65: 398-401 (1988) 

  13. Martin ML, Zeleznak KJ, Hoseney RC. A mechanism of bread firming. I. Role of starch swelling. Cereal Chem. 68: 498-503 (1991) 

  14. Martin ML, Hoseney RC. A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chem. 68: 503-507 (1991) 

  15. Willhoft EMA. Bread staling. II. Theoretical study. J. Sci. Food Agr. 22: 180-185 (1971) 

  16. Breaden PW, Willhoft MA. Bread staling. III. Measurement of the redistribution of moisture in bread by gravimetry. J. Sci. Food Agr. 22: 647-652 (1971) 

  17. Whistler RL, Daniel JR. Carbohydrates in Food Chemistry. Academic Press, New York, NY, USA. pp.15-23 (1985) 

  18. Chen PL, Long Z, Ruan R, Labuza TP. Nucelar magnetic resonance studies of water mobility in bread during storage. Lebensm. -Wiss. Technol. 30: 178-183 (1997) 

  19. Leung HK, Magnuson JA, Bruinsma BL. Water binding of wheat flour doughs and breads as studied by deuteron relaxation. J. Food Sci. 48: 95-99 (1983) 

  20. Wynne-Jones S, Blanshard JMV. Hydration studies of wheat starch, amylopectin, amylose gels, and bread by proton magnetic resonance. Carbohyd. Polym. 6: 289-306 (1986) 

  21. Kim-Shin M-S, Mari F, Rao PA, Stengle TR, Chinachoti P. $^{17}O$ nuclear magnetic resonance studies of water mobility during bread staling. J. Agr. Food Chem. 39: 1915-1920 (1991) 

  22. Ablett S, Lillford P. Water in foods. Chem. Brit. 27: 1024-1026 (1991) 

  23. Kumosinski TF, Pessen H, Farrell HM. Protein-water interactions from $^2H$ NMR relaxation studies: Influence of hydrophilic, hydrophobic, and electrostatic interactions. pp. 541-560. In: Water Relationships in Food. Levine H, Slade L (eds). Plenum Press, New York, NY, USA (1991) 

  24. Given PS. Molecular behavior of water in a flour-water baked model system. pp. 465-467. In: Water Relationships in Food. Levine H, Slade L (eds). Plenum Press, New York, NY, USA (1991) 

  25. Hallen B, Wennesstrom H. Interpretation of magnetic resonance data from water nuclei in heterogeneous systems. J. Chem. Phys. 75: 1928-1943 (1981) 

  26. Li S, Dickinson LC, Chinachoti P. Proton relaxation of starch and gluten by solid-state nuclear magnetic resonance spectroscopy. Cereal Chem. 73: 736-743 (1996) 

  27. Slade L, Levine H. Water relationships in starch transitions. Carbohyd. Polym. 21: 105-131 (1993) 

  28. Umbach SL, Davis EA, Gordon J, Callaghan PA. Water self-diffusion coefficients and dielectrics determination for starch-gluten-water mixture by microwave and by conventional methods. Cereal Chem. 69: 637-642 (1992) 

  29. Zobel HF, Kulp K. The staling mechanism. pp. 1-64. In: Baked Goods Freshness. Hebeda RE, Zobel HF (eds). Marcel Dekker, Inc., New York, NY, USA (1996) 

  30. Czuchajowska Z, Pomeranz Y. Differential scanning calorimetry, water activity, and moisture contents in crumb center and near crust zones of bread during storage. Cereal Chem. 66: 305-309 (1989) 

  31. Slade L, Levine H. Recent advances in starch retrogradation. pp. 387-430. In: Industrial Polysaccharides: The Impact of Biotechnology and Advanced Methodologies. Stivala SS, Crescenzi V, Dea ICM (eds). Gordon and Breach, New York, NY, USA (1987) 

  32. Cluskey JE, Taylor NW, Senti FR. Relation of the rigidity of flour, starch, and gluten gels to bread staling. Cereal Chem. 36: 236-246 (1959) 

  33. Senti FR, Dimler RJ. Changes in starch and gluten during aging of bread. Baker's Dig. 34: 28-32 (1960) 

  34. Scoch TJ. Starch in bakery products. Baker's Dig. 39: 48-57 (1965) 

  35. Ponte Jr JG, Titcomb ST, Cotton RH. Flour as a factor in bread firming. Cereal Chem. 39: 437-444 (1962) 

  36. Maleki M, Hoseney RC, Mattern PJ. Effects of loaf volume, moisture content, and protein quality on the softness and staling rate of bread. Cereal Chem. 57: 138-140 (1980) 

  37. Longton J, LeGrys GA. Differential scanning calorimetry studies on the crystallinity of ageing wheat starch gels. Starch 33: 410-414 (1981) 

  38. Hellman NN, Fairchild B, Senti FR. The bread staling problem; molecular organization of starch upon aging of concentrated starch gels at various moisture levels. Cereal Chem. 31: 495-505 (1954) 

  39. Zeleznak KJ, Hoseney RC. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 63: 407-411 (1986) 

  40. Baik M-Y, Kim K-J, Cheon K-C, Ha Y-C, Kim W-S. Effects of moisture content on recrystallization of rice starch gels. Korean J. Food Technol. 29: 939-946 (1997) 

  41. Xu A, Chung OK, Ponte Jr JG. Bread crumb amylograph studies. I. Effects of storage time, shortening, flour lipids, and surfactants. Cereal Chem. 69: 495-501 (1992) 

  42. Xu A, Ponte Jr JG, Chung OK. Bread crumb amylograph studies. II. Cause of unique properties. Cereal Chem. 69: 502-507 (1992) 

  43. Larsen NG, Greenwood DR. Water addition and the physical properties of mechanical dough development doughs and bread. J. Cereal Sci. 13: 195-205 (1991) 

  44. Davidou S, Le Meste M, Debever E, Bekaert D. A contribution to the study of staling of white bread; effect of water and hydrocolloid. Food Hydrocolloid 10: 375-383 (1996) 

  45. Willhoft EMA. Recent developments on the bread staling problem. Baker's Dig. 47: 14-20 (1973) 

  46. Zobel HF. Starch crystal transformations and their industrial importance. Starch 40: 1-7 (1988) 

  47. Ruan R, Almaer S, Huang VT, Perkins P, Chen P, Fulcher RG. Relationship between firming and water mobility in starch-based food systems during storage. Cereal Chem. 73: 328-332 (1996) 

  48. Leung HK, Steinberg MP. Water binding of food constituents as determined NMR, freezing, sorption, and dehydration. J. Food Sci. 44: 1212-1216 (1979) 

  49. D'Avigon DA, Hung C, Pagel MTL, Hart B, Bretthorst GL, Ackerman JJH. $^1H$ and $^2H$ NMR studies of water in work-free wheat flour doughs. pp. 391-414. In: NMR Applications in Biopolymers. Finley JW, Schmidt SJ, Serianni AS (eds). Plenum Press, New York, NY, USA (1990) 

  50. Schiraldi A, Piazza L, Riva M. Bread staling: A calorimetric approach. Cereal Chem. 73: 32-39 (1996) 

  51. Le Meste M, Huang VT, Panama J, Anderson G, Lentz R. Glass transition of bread. Cereal Food World 37: 264-267 (1992) 

  52. Aynie S, Le Meste M, Isnard M. Use of DMA for the study of the glass transition (Tg) in white bread. pp. 349-358. In: The Science and Technology of the Glassy State in Foods. Blanshard JMV, Lillford PJ (eds). Univ. Nottingham Press, Nottingham, UK (1994) 

  53. Chinachoti P. Probing molecular and structural thermal events in cereal-based products. Thermochim. Acta 246: 357-369 (1994) 

  54. Levine H, Slade L. Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products. pp. 157-180. In: Dough Rheology and Baked Product Texture. Faridi H, Faubion JM (eds). Van Nostrand Reinhold, New York, NY, USA (1990) 

  55. Li S, Dickinson LC, Chinachoti P. Mobility of "Unfreezable" and "Freezable" water in waxy corn starch by 2H and 1H NMR. J. Agr. Food Chem. 46: 62-71 (1998) 

  56. Chinachoti P. NMR dynamic prtperties of water in relation to thermal characteristics in bread. pp. 160-178. In: The Properties of Water in Foods. ISOPOW 6. Reid DS (ed). Thomson Science, London, UK (1998) 

  57. Hallberg LM, Chinachoti P. Dynamic mechanical analysis for glass transitions in long shelf-life bread. J. Food Sci. 57: 1201-1204 (1992) 

  58. Taub IA, Halliday JW, Kim Y-K. Bread structure and stability: Rheological, calorimetric, spectroscopic, and microscopic characterization. pp. 1391-1398. In: Army Science Conference Proceedings. Oct. 26-28, Boston, MA, USA. Research and Development Associates for Military Food and Packaging Systems, Inc., Boston, MA, USA (1994) 

  59. Gomi Y, Fukuoka M, Mihori T, Watanabe H. The rate of starch gelatinization as observed by PFG-NMR measurement of water diffusivity in rice starch/water mixtures. J. Food Eng. 36: 359-369 (1998) 

  60. Baik M-Y, Chinachoti P. Moisture redistribution and phase transition during bread staling. Cereal Chem. 77: 484-488 (2000) 

  61. Baik M-Y, Chinachoti P. Effects of glycerol and moisture gradient on thermomechanical properties of white bread. J. Agr. Food Chem. 49: 4031-4038 (2001) 

  62. Baik M-Y, Chinachoti P. Effects of glycerol and moisture redistribution on mechanical properties of white bread. Cereal Chem. 79: 376-382 (2002) 

  63. Baik M-Y, Chinachoti P. Water self-diffusion coefficient and staling of white bread as affected by glycerol. Cereal Chem. 80: 740-744 (2003) 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로