$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

토양에 유입된 카드뮴, 구리, 아연의 시간에 따른 분배 계수의 변화
Aging Effects On Partitioning Coefficients of Cd, Cu, and Zn in Metal-spiked Soils 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.13 no.5, 2008년, pp.47 - 56  

김보정 (The Center for NanoBioEarth, Department of Geosciences, Virginia Tech)

초록
AI-Helper 아이콘AI-Helper

금속이 염 용액 형태로 토양에 유입될 때, 그 금속의 용해도는 시간이 지남에 따라 감소하는 경향(aging)을 보이는데, 이러한 시간 의존성 외에 토양 내 금속 용해도의 변화에 영향을 미치는 또 다른 요인들에 대한 고찰은 아직 미비한 상태이다. 본 연구에서는 물리화학적 성질이 다른 5 종류의 토양 (히스토졸, 앤디졸, 옥시졸, 미세입자 알피졸, 조대입자 알피졸)에 여러 비율의 카드뮴(2.5-20 mg ${kg}^{-1}$)/ 구리(50-400 mg${kg}^{-1}$)/ 아연(50-400 mg ${kg}^{-1}$) 염 용액을 혼합하여, 상온에서 1년 동안 토양의 성질, 금속의 종류, 금속의 농도에 따른 용해도 변화관찰을 시도하였다. 그 결과, 히스토졸에서는 카드뮴이, 앤디졸에서는 구리가, 미세입자 알피졸에서는 아연이 가장 높은 분배 계수를 보였고, 옥시졸과 조대입자 알피졸에서는 모든 금속들이 가장 낮은 분배 계수를 나타내었다. 또한, 카드뮴과 아연의 경우 토양의 종류와는 무관하게 시간에 따른 분배 계수의 증가를 보였지만, 구리의 경우 토양 내 유입된 후 일주일 부터는 이러한 경향성를 찾아보기 어려웠다. 구리는 토양의 유기물이 많을 경우에는 빠른 흡착성을 보이지만, 토양수에 녹아있는 유기물이 많을 경우에는 그 흡착 특성이 제한됨을 관찰하였다. 더욱이, 흡수력이 높은 토양의 경우 금속의 분배 계수는 유입된 금속의 양과는 무관할 뿐만 아니라, 높은 농도로 처리된 토양의 금속 분배 계수가 낮은 농도로 처리된 토양의 분배계수와 유사해지기 까지는 더 오랜 시간이 요구되는 반면, 낮은 흡수력을 가진 토양의 경우에는 시간보다는 금속의 초기 유입양이 분배 계수 결정에 더욱 큰 영향을 미치는 것으로 밝혀졌다. 본 연구를 통해, 토양에 유입된 금속의 용해도 변화는 시간 뿐만 아니라, 토양의 성질, 금속의 종류와 농도에도 상당히 의존함을 입증하였다.

Abstract AI-Helper 아이콘AI-Helper

Temporal changes of metal solubility have been repeatedly observed in soils equilibrated with metal salt solutions. This phenomenon is known as aging, yet factors that affect the degree of metal aging remain largely unexamined. In this study, we compared the extent of aging on metal partitioning dep...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • A series of metalspiked soils was generated by adding 100 mL of the each stock solution to 250 g of air-dried soil, which produced metal loadings of Cu and Zn of 50, 100, 200, and 400 mg kg−1, and Cd of 2.5, 5, 10, and 20 mg kg−1.
  • Four levels of Cd were tested in the Hudson, Carlisle (organic) and Arkport soils, but the waterextractable Cd concentration was often below the detection of limit of ICP (0.003 µM) in the lowest Cd treatment (2.5 mg kg−1) of the Hudson and Carlisle soils, which allowed us to quantify Kd values only for the 5, 10 and 20 mg kg−1 Cd treatments in these soils.
  • In the case of the Oxisol and Egmont soils, however, there was not enough soil to create four different levels of metal loading, and therefore, only two metal loadings, the highest level (Cd 20 mg kg−1 and Cu and Zn 400 mg kg−1) and the medium level (Cd 5 mg kg−1 and Cu and Zn 100 mg kg−1) were prepared.
  • One-week and one-month of equilibration were required to stabilize the Kd values for the 100 mg kg−1 and the 400 mg kg−1 Cu treatment, respectively.
  • During the metalequilibration period, appropriate amounts of de-ionized water were added to the samples to maintain constant soil moisture over time. Soil solution was collected repeatedly from the same soils by vacuum extraction at equilibrium times of 1 day, 3 days, 1 week, 1 month, 3 months, 6 months, and 1 year. To measure total metal concentrations in the soils after 1 year, a microwaveassisted HF digestion technique (EPA 3052) was used.
  • ) were characterized for pH, electrical conductivity (EC), and dissolved organic carbon (DOC) contents (Table 2). The EC measurement was carried out with an OAKTON conductivity meter at 25℃, and the DOC levels in the soil solutions were determined using persulfate oxidation/CO2 analysis (OI Analytical model 1010 TOC/DOC autoanalyzer, College Station, TX).
  • values on total Zn loadings. The Kd values for Zn in the Carlisle were significantly higher than those for the other soils, presumably due to higher levels of OM and extractable Fe oxides in this soil, yet lower than that of the Hudson which had the highest pH of the soils tested in this study. The difference in pH probably accounts for the ability of the Hudson mineral soil to sorb Zn more effectively than the organic soil at the same loadings, indicating the importance of pH in determining the degree of Zn sorption in soils over time.
  • To measure total metal concentrations in the soils after 1 year, a microwaveassisted HF digestion technique (EPA 3052) was used. The amount of Cd, Cu, and Zn in the soil digests as well as in the solution extracts was analyzed by inductively coupled plasma (ICP) emission spectrometry (SPECTRO CIROS CCD-ICP Spectrophotometer).
  • Soil solution extracts collected at times ranging from 1 day to 1 year were analyzed for dissolved Cd, Cu, and Zn concentrations, and for chemical properties including pH, dissolved organic carbon (DOC) content, and electrical conductivity (EC). To facilitate comparison among the soils and the metals tested, and for the practical interest of predicting metal behavior in the soil environment, the results of this study were presented in terms of metal partitioning coefficients (Kd) estimated over the 1-year period of equilibration.

대상 데이터

  • Five soils, including two Alfisols with different textures (an Arkport fine sandy loam and a Hudson silt loam, collected in Tompkins County, NY), an Andisol (Egmont series, New Zealand), a Histosol (Carlisle, Orange County, NY), and an Oxisol (Ap horizon of an Acrohumox, Brazil), were tested for the present study. The surface soils were collected, air-dried, mixed thoroughly, passed through a 2-mm stainless steel screen, and then stored in sealed plastic bins prior to use.

이론/모형

  • Soil pH was determined in deionized water (1 : 2 w/v), and the organic matter (OM) levels of the soils were measured using the WalkleyBlack method (Allison, 1965). Cation exchange capacity (CEC) of the soils was determined by an unbuffered BaCl2 extraction method (Gillman, 1979), and the concentration of extractable Fe oxides was estimated by the Coffin method (Coffin, 1961). All the measurements are reported on a soil dry weight basis.
  • Characteristics of the soils were measured using the bulk control subsamples. Soil pH was determined in deionized water (1 : 2 w/v), and the organic matter (OM) levels of the soils were measured using the WalkleyBlack method (Allison, 1965). Cation exchange capacity (CEC) of the soils was determined by an unbuffered BaCl2 extraction method (Gillman, 1979), and the concentration of extractable Fe oxides was estimated by the Coffin method (Coffin, 1961).
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Allison, L.E., 1965, Organic carbon, In: C.A. Black (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties, American Society of Agronomy, Madison, WI, p. 1372 

  2. Benedetti, M.F., Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., and Koopal, L.K., 1995, Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model, Environ. Sci. Technol., 29, 446-457 

  3. Clark, C.J. and McBride, M.B., 1984, Chemisorption of Cu (II) and Co (II) on allophane and imogolite, Clays Clay Miner., 32, 300-310 

  4. Coffin, D.E., 1961, A method for the determination of free iron in soils and clays, Can. J. Soil Sci., 43, 7-17 

  5. Giller, K.E., Witter, E., and McGrath, S.P., 1998, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review, Soil Biol. Biochem., 30, 1389-1414 

  6. Gillman, G.P., 1979, A proposed method for the measurement of exchange properties of highly weathered soils, Aust. J. Soil Res., 17, 129-139 

  7. Jacobson, A.R., McBride, M.B., Baveye, P., and Steenhuis, T.S., 2005, Environmental factors determining the trace-level sorption of silver and thallium to soils, Sci. Total Environ., 345, 191-205 

  8. Kandeler, E., Kampichler, C., and Horak, O, 1996, Influence of heavy metals on the functional diversity of soil microbial communities, Biol. Fert. Soils, 23, 299-306 

  9. Kinniburgh, D.G., Jackson, M.L., and Syers, J.K., 1976, Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum, Soil Sci. Soc. Am. J., 40, 796-799 

  10. Lock, K. and Janssen, C.R., 2003a, Influence of aging on copper bioavailability in soils, Environ. Toxicol. Chem., 22, 1162-1166 

  11. Lock, K. and Janssen, C.R., 2003b, Influence of ageing on zinc bioavailability in soils, Environ. Pollut., 126, 371-374 

  12. Lopes, A.S. and Cox, F.R., 1977, A survey of the fertility status of surface soils under "Cerrado" vegetation in Brazil, Soil Sci. Soc. Am. J., 41, 742-747 

  13. Luo, Y. and Rimmer, D.L., 1995, Zinc-copper interaction affecting plant growth on a metal-contaminated soil, Environ. Pollut., 88, 79-83 

  14. McBride, M.B., 1989, Reactions controlling heavy metal solubility in soils, In: B.A. Stewart (ed.), Advances in Soil Science, Springer-Verlag, New York, 10, p. 1-56 

  15. McBride, M.B., 2000, Chemisorption and precipitation reactions, In: M.E. Sumner (ed.), Handbook of Soil Science, CRC Press, New York, p. B265-B302 

  16. McBride, M.B., 2001, Cupric ion activity in peat soil as a toxicity indicator for maize, J. Environ. Qual., 30, 78-84 

  17. McLaren, R.G. and Crawford, D.V., 1974, Studies on soil copper III. Isotopically exchangeable copper in soils, J. Soil Sci., 25, 111-119 

  18. Pedersen, M.B. and van Gestel, C.A.M., 2001, Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination, Ecotoxicol. Environ. Saf., 49, 54-59 

  19. Renella, G., Ortigoza, A.L.R., Landi, L., and Nannipieri, P., 2003, Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose ( $ED_{50}$ ), Soil Biol. Biochem., 35, 1203-1210 

  20. Stevens, D.P., McLaughlin, M.J., and Heinrich, T., 2003, Determining toxicity of lead and zinc runoff in soils: Salinity effects on metal partitioning and on phytotoxicity, Environ. Toxicol. Chem., 22, 3017-3024 

  21. Stevenson, F.J., 1977, Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration method, Soil Sci., 123, 10-17 

  22. Stuczynski, T.I., McCarty, G.W., and Siebielec, G., 2003, Response of soil microbial activities to cadmium, lead, and zinc salt amendments, J. Environ. Qual., 32, 1346-1355 

  23. Temminghoff, E.J.M, Van Der Zee, S.E.A.T.M., and De Haan, F.A.M., 1997, Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter, Environ. Sci. Technol., 31, 1109-1115 

  24. Van Raij, B. and Peech, M., 1972, Electrochemical properties of some oxisols and alfisols of the tropics, Soil Sci. Soc. Amer. Proc., 36, 587-593 

  25. Weng, L., Temminghoff, E.J.M., Lofts, S., Tipping, E., and Van Riemsdijk, W.H., 2002, Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil, Environ. Sci. Technol., 36, 4804-4810 

  26. White, M.C. and Chaney, R.L., 1980, Zinc, Cadmium and Manganese uptake by soybean from two zinc- and cadmiumamended coastal plain soils, Soil Sci. Soc. Am. J., 44, 308-313 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로