$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

Structural engineering and mechanics : An international journal, v.29 no.1, 2008년, pp.77 - 89  

Chandak, Rajeev (Department of Civil Engineering, Indian Institute of Technology) ,  Upadhyay, Akhil (Department of Civil Engineering, Indian Institute of Technology) ,  Bhargava, Pradeep (Department of Civil Engineering, Indian Institute of Technology)

Abstract AI-Helper 아이콘AI-Helper

Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the iden...

주제어

참고문헌 (30)

  1. El Kadi, H. (2006), "Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks-A review", Compos. Struct., 73(1), 1-23 

  2. Evans, H.R. and Taherian, A.R. (1980), "A design aid for shear lag calculations", Proc. Inst. Civil Eng., Part 2, 69, 403-424 

  3. Fafitis, A. and Rong, A.Y. (1995), "Analysis of thin-walled box girders by parallel processing", Thin Wall. Struct., 21, 233-240 

  4. Hagan, M.T. and Menhaj, M. (1994), "Training feed forward networks with the Marquardt algorithm", IEEE T. Neural Networ., 5(6), 989-993 

  5. Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996) Neural Network Design, PWS Publishing, Boston (MA) 

  6. Karman, Th.V. (1924), Die Mittragende Poreite. Springer, Berlin 

  7. Kartalopoulos, S.V. (2000), Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications. Prentice Hall of India, Delhi 

  8. Koker, R., Altinkok, N. and Demir, A. (2007), "Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms", Mater. Des., 28(2), 616-627 

  9. Kristek, V. (1979), "Folded plate approach to analysis of shear wall systems and frame structures", Proc. Inst. Civil Eng., Part 2, 67, 1065-1075 

  10. Kristek, V., Studnicka, J. and Skaloud, M. (1981), "Shear lag in wide flanges of steel bridges", ACTA Tech. CSAV, 26, 464-488 

  11. Lopez-Anido Roberto and GangaRao, H.V.S. (1996) "Warping solution for shear lag in thin-walled orthotropic composite beams", J. Eng. Mech., ASCE, 122(5), 449-457 

  12. Luo, Q.Z., Li, Q.S. and Tang, J. (2002), "Shear lag in box girder bridges", J. ridge Eng., ASCE, 7(5), 308-313 

  13. MATLAB Neural Networks Toolbox of MathWorks. Available from: www.mathworks.com 

  14. Mishra, A.K. and Upadhyay, A. (2004), "Column design using ANN", Indian Concrete Institute Journal, July-September, 17-19 

  15. Nagaraj, V. and GangaRao, H.V.S. (1997) "Static behavior of pultruded GFRP beams", J. Comp. Const., ASCE, 1(3), 120-129 

  16. Nakai, H. and Yoo, C.H. (1988), Analysis and Design of Curved Steel Bridges, McGraw-Hill Book Company, New York 

  17. Pavlovic, M.N., Tahan, N. and Kotsovos, M.D. (1998a), "Shear lag and effective breadth in rectangular plates with material orthotropy. Part 1: Analytical formulation", Thin Wall. Struct., 30(1-4), 199-213 

  18. Pavlovic, M.N., Tahan, N. and Kotsovos, M.D. (1998b), "Shear lag and effective breadth in rectangular plates with material orthotropy. Part 2: Typical results of parametric studies", Thin Wall. Struct., 30(1-4), 215-237 

  19. Rajesh, A.S. (2005), "Shear lag behaviour of laminated composite box beams", M. Tech. Dissertation, Indian Institute of Technology Roorkee 

  20. Reissner, E. (1946), "Analysis of sear lag in box beams by the principle of minimum potential energy", Q. Appl. Math., 6(3), 268-278 

  21. Seible, F. and Scordelid, A.C. (1983), "Nonlinear analysis of multi-cell reinforced concrete box girder bridges", Eng. Struct., 5, 1045-1057 

  22. Tahan, N., Pavlovic, M.N. and Kotsovos, M.D. (1997), "Shear-lag revisited: the use of single Fourier series for determining the effective breadth in plated structures", Comput. Struct., 63(4), 759-767 

  23. Tenchev, R.T. (1992), "Shear lag in orthotropic beam flanges and plates with stiffeners", Int. J. Solids Struct., 33(9), 1317-1334 

  24. Tripathy, A.K., Patel, H.J. and Pang, S.S. (1994), "Bending analysis of laminated composite box beams", J. Eng. Mater. Tech., 116, 121-129 

  25. Turias, I.J., Gutierrez, J.M. and Galindo, P.L. (2005), "Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks", Compos. Sci. Tech., 65, 609-619 

  26. Upadhyay, A. (1998), "Optimum design of FRP box-girder bridges", Ph.D. Dissertation, Indian Institute of Technology Madras 

  27. Upadhyay, A. and Kalyanaraman, V. (2003), "Simplified analysis of FRP box-girders", Compos. Struct., 59, 217- 225 

  28. Wu, Y., Zhu, Y., Lai, Y. and Pan, W. (2002), "Analysis of shear lag and shear deformation effects in laminated composite box beams under bending loads", Compos. Struct., 55, 147-156 

  29. Wu,Y., Lai, Y., Zhang, X. and Zhu, Y. (2004), "A finite beam element for analyzing shear lag and shear deformation effects in composite-laminated box girders", Comput. Struct., 82, 763-771 

  30. Zhang, Z. and Friedrich, K. (2003), "Artificial neural networks applied to polymer composites: A review", Compos. Sci. Technol., 63, 2029-2044 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로