$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암석의 산성배수 발생개연성 평가 및 피해저감대책: 터널건설예정구간 사례
Assessment of Acid Rock Drainage Production Potential and Damage Reduction Strategy: A Case Study of Tunnel Construction Area 원문보기

자원환경지질 = Economic and environmental geology, v.41 no.3, 2008년, pp.335 - 344  

김재곤 (한국지질자원연구원) ,  이진수 (한국지질자원연구원) ,  김통권 (한국지질자원연구원)

초록
AI-Helper 아이콘AI-Helper

경상남도 김해시 국가지원 지방도60호선 터널건설예정구간의 암석에 대하여 산성배수 발생개연성을 평가하고 피해 저감대책을 검토하였다. 건설예정구간의 지반은 석영반암, 사암, 응회암, 화강암으로 구성되어 있으며 황화광물은 석영반암과 화강암에 산점상으로 사암에 맥상으로 산출되었다. 황화광물의 함량이 높은 석영반암과 사암은 산성배수 발생개연성이 높고 중금속(Zn, Pb, As)를 많이 함유한 산성배수가 주변지역으로 유출되어 환경오염을 유발할 개연성이 높은 것으로 나타났다. 건설공사과정에서 산성배수가 발생될 개연성이 높은 구역에서 배출되는 배수는 중화 및 중금속 제거처리 후 배수가 이루어져야 하며, 절취면의 안정성 확보를 위하여 산성배수의 발생을 근원적으로 억제할 수 있는 코팅처리기술을 적용한 후 숏크리트, 앵커 등 사면보강공법이 적용되어야 할 것으로 판단된다. 석영반암과 사암은 골재로서 활용이 어려우며 지반성토재로 사용할 경우 지하수와 우수의 접촉을 최소화할 수 있는 성토층의 구조를 갖춘 후 활용하여야 한다.

Abstract AI-Helper 아이콘AI-Helper

The acid rock drainage (ARD) production potential of rock was assessed for a tunnel construction area, Kimhae and the damage reduction strategy was discussed based on the ARD risk evaluation. The geology of the studied area consisted of Mesozoic quartz porphyry, sandstone, tuff and granite. Sulfides...

주제어

참고문헌 (24)

  1. Lee, H.Y. and Kim, S.W. (1964) Geological map of Kumhae sheet. Geological Survey of Korea, 28p 

  2. Belzile, N., Maki, S., Chen, Y. and Goldsack, D. (1997) Inhibition of pyrite oxidation by surface treatment. The Science of the Total Environment, v. 196, p. 177- 186 

  3. Blowes, D.W., Reasdon, E.J., Jambor, J.L. and Cherry. J. (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim. et Cosmochim. Acta, v. 55, p. 965-978 

  4. Chen Y., Li, Y., Cai, M., Belzile, N. and Dang. Z. (2006) Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Minerals Engineering, v. 19, p. 19-27 

  5. Evangelou, V.P. (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecological Engineering, v. 17, p. 165-178 

  6. Hedin, R.S., Nairn, R.W. and Kleinmann, R.L. (1994) Passive treatment of coal mine drainage. US Bureau of Mines. Information Circular 9389 

  7. Jennings, S.R. Dollhopf, D.J. and Inskeep, W.P. (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Applied Geochem., v. 15, p. 235- 243 

  8. Jennings, S.R. and Dollhopf, D.J. (1995) Acid-base account effectiveness for determination of mine waste potential acidity. J. of Hazardous Material, v. 41, p. 161-175 

  9. Johnson, D.B. and Hallberg, K.B. (2005) Acid mine drainage remediation options: a review. Science of the Total Envirnment, v. 338, p. 3-14 

  10. Jiang, C.L., Wang, X.H. and Parekh, B.K. (2000) Effect of sodium oleate on inhibiting pyrite oxidation. Int. J. Miner. Process, v. 58, p. 305-318 

  11. Kalin, M., Wheeler, W.N. and Olaveson, M.M. (2006) Response of phytoplankton to ecological engineering remediation of a Canadian shield lake affected by acid mine drainage. Ecological Engineering, v. 28, p. 296- 310 

  12. Kim, J.G. (2007) Acid drainage and damage reduction strategy in construction site: an introduction. Econ. Environ, Geol., v. 50, p. 651-660 

  13. Koryak, M., Shapiro, M.A. and Sykora, J.L. (1972) Riffle zoobenthos in streams receiving acid mine drainage. Water Research, v. 6, p. 1239-1274 

  14. Lan, Y., Huang, X. and Deng, B. (2002) Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Archives of Environmental Contamination and Technology, v. 43, p. 168-174 

  15. Lee, H., Cody, R.D., Cody, A.M. and Spry, P.G. (2005) The formation and role of ettringite in Iowa highway concrete deterioration. Cement and Concrete Research, v. 35, p. 332-343 

  16. Lee, H.Y. and Kim, S.W. (1964) Geological map of Kumhae sheet. Geological Survey of Korea. 28p 

  17. Matlock, M.M., Howerton, B.S. and Atwood, D.A. (2003) Covalent coating of coal refuse to inhibit leaching. Advances in Environmental Research, v. 7, p. 495- 501 

  18. Nicholson, R.V., Gillham, R.W., Cherry, J.A. and Reardon, E.J. (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barrier. Can. Geotech. J., v. 26, p. 1-8 

  19. Nyavor, K., Egiebor, N.O. and Fedrak, P.M. (1996) Suppression of microbial pyrite oxidation by fatty acid amine treatment. The Science of the Total Environment, v. 182, p. 75-83 

  20. Shamshuddin, J., Muhrizal, S., Fauziah, I. and Husni, M.H.A. (2004) Effects of adding organic materials to an acid sulfate soil on the growth pf cocoa (Theobroma cacao L.) seedlings. Science of the Total Environment, v. 323, p. 33-45 

  21. Siddharth, S., Jamal, A., Dhar, B.B. and R. Shukla, (2002) Acid-base accounting: a geochemical tool for management of acid drainage in coal mines. Mine Water and the Environment, v. 21, p. 106-110 

  22. Sobek, A.A., Rastogi, V. and Bendetti, D.A. (1990) Prevention of water pollution problems in minning: the bactericide technology. Mine Water and the Environment, v. 9, p. 133-148 

  23. Stum, W. and Morgan, J.J. (1995) Aquatic chemistry: Chemical equilibria and rates in natural waters, 3th edition. John Wiley and Sons Inc., New York 

  24. Zhang, Y.L. and Evangelou, V.P. (1998) Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Science, v. 163, p. 53-62 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로