$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 참나무속 5종의 오존 독성에 대한 생리생화학적 반응
Physiological and Biochemical Responses to Ozone Toxicity in Five Species of genus Quercus Seedlings 원문보기

한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.10 no.2, 2008년, pp.47 - 57  

김두현 (국립산림과학원 산림유전자원부) ,  한심희 (국립산림과학원 산림유전자원부) ,  구자정 (국립산림과학원 산림유전자원부) ,  이갑연 (국립산림과학원 산림유전자원부) ,  김판기 (경북대학교 산림환경자원학부)

초록
AI-Helper 아이콘AI-Helper

오존에 노출된 참나무속 5종의 오존에 대한 내성 능력을 평가하기 위하여 생리생화학적 변화를 조사하였다. 150ppb 오존에 노출된 참나무속 5종(상수리나무, 갈참나무, 대왕참나무, 졸참나무, 굴참나무)의 잎에서 엽록소 함량, 광합성 특성, MDA 함량항산화효소 활성이 측정되었다. 엽록소, 카로테노이드 함량, 순광합성 속도 및 탄소고정효율은 오존 처리 후에 감소하였다. 오존에 노출된 수목의 총 엽록소 함량과 탄소고정효율의 감소율은 갈참나무의 경우 15%와 34% 였으며, 굴참나무의 경우 38.3%와 62.1%였다. MDA 함량은 오존 처리 하에서 증가하였으며, 상수리나무에서 140%까지 증가를 보였다. 상수리나무의 SOD 활성 증가율(60%)은 가장 높았으며, APX 활성은 굴참나무, 졸참나무, 상수리나무에서 증가를 보였다. 생리생화학적 반응을 기초로 한 참나무속 5종의 내성 능력은 갈참나무, 대왕참나무, 졸참나무, 굴참나무, 상수리나무 순이었다. 결론적으로 엽록소 함량, 광합성 특성, MDA 함량, 항산화효소와 같은 생리학적 지표들은 오존 스트레스에 대한 내성을 평가하기 위한 매우 중요한 지표들로 생각되며, 이러한 모수들은 서로 밀접한 관계를 가진다.

Abstract AI-Helper 아이콘AI-Helper

Physiological and biochemical changes of five species of genus Quercus exposed to ozone fumigation were investigated to assess their tolerance against ozone toxicity. At the end of 150 ppb ozone fumigation, chlorophyll contents, photosynthetic characteristics, malondialdehyde(MDA) and antioxidative ...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Therefore, this study was undertaken to investigate cellular responses to ozone as mechanism for oxidant impact on photosynthesis in seedlings of oak trees. The aims of the present study were to (1) determine the effects of ozone exposure on photosynthetic pigments, photosynthesis, antioxidant enzyme activities and lipid peroxidation, (2) evaluate the potential occurrence of interspecific variations in O3 sensitivity in Quercus, and (3) evaluate a differential sensitivity to ozone exposure in Quercus.
  • Our present study suggests that 1) physiological markers such as chlorophyll contents, photosynthesis, MDA content and antioxidative enzymes were considered as the very important indicators in order to evaluate the tolerance against ozone stress, and 2) parameters were closely related with each other and thus they cannot be used as a single marker. The results of this study highlight the species specificity of ozone responses.

가설 설정

  • Ozone exposure enhanced leaf senescence-related processes and induced reduction of chlorophyll content, photosynthetic decline and depletion of biomass accumulation. Our present study suggests that 1) physiological markers such as chlorophyll contents, photosynthesis, MDA content and antioxidative enzymes were considered as the very important indicators in order to evaluate the tolerance against ozone stress, and 2) parameters were closely related with each other and thus they cannot be used as a single marker. The results of this study highlight the species specificity of ozone responses.
본문요약 정보가 도움이 되었나요?

참고문헌 (54)

  1. Alonso, R., S. Elvira, F. J. Castillo, and B. S. Gimeno, 2001: Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment 24, 905-916 

  2. Anderson, P. D., B. Palmer, J. L. J. Houpis, M. K. Smith, and J.C. Pushnik, 2003: Chloroplastic responses of ponderrosa pine (Pinus ponderosa) seedlings to ozone exposure. Environment International 29, 407-413 

  3. Beauchamp, C. and I. Fridovich, 1971: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276-297 

  4. Bielenberg, D. G., J. P. Lynch, and E. J. Pell, 2002: Nitrogen dynamics during $O_3$ -dincuded accelerated senescence in hybrid polar. Plant, Cell & Environment 25, 501-512 

  5. Calatayud, A., J. W. Ramirez, H. D. Iglesias, and E. Barreno, 2002: Effects of ozone on photosynthetic $CO_2$ exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum, 116, 308-316 

  6. Carlberg, I. and B. Mannervik, 1985: Glutathione reductase. Methods in Enzymology 113, 485-490 

  7. Elvira, S., R. Alonso, F. J. Castillo, and B. S. Gimeno, 1998: On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytologist 138, 419-432 

  8. Elvira, S, V. Bermejo, E. Manrique, and B. S. Gimeno, 2004: On the response of two populations of Quercus coccifera to ozone and its relationship with ozone uptake. Atmospheric Environment. 38, 2305-2311 

  9. Farquhar, G.D., von S. Caemmerer, and J.A. Berry, 1980: A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149, 78-90 

  10. Fossati, P., L. Prencipe, and G. Berti, 1980: Use of 3,5-dichloro-2-hydroxy benzenesulfonic acid /4-aminophenazone chromogenic system in direct enzyme assay of uric acid in serum and urine. The Clinical Chemistry Methodology 26, 227-231 

  11. Felzer, B. S., T. Cronin, J. M., Reilly, J. M. Melillo, and X. Wang, 2007: Impacts of ozone on trees and crops. Comptes Rendus Geoscience 339, 784-798 

  12. Fuhrer, J. and B. Achermann, 1994: Critical levels for ozone; AUN-ECE Workshop report. FAC Report No. 16 Swiss federal research station for Agricultural Chemistry and Environmental Hygience, Liebefeld-Bern 

  13. Han, S. H., D. H., Kim, K. Y. Lee, J .J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560 

  14. Han, S. H., J. C. Lee, W. Y. Lee, Y. Park, and C. Y. Oh, 2006: Antioxidant characteristics and phytoremediation potential of 27 texa of roadside trees at industrial complex area. Korean Horticultural of Agricultural and Forest Meteorology 8, 159-168 

  15. Hanson, P. J., S. D. Wullschleger, R. J. Norby, T. J. Tschaplinski, and C. A. Gunderson, 2005: Importance of changing $CO_2$ , temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology 11, 1402-1423 

  16. Hanson, P. J., L. J. Samuelson, and S. D. Wullschleger, 1994: Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. Foliage: differential sensitivity to ozone. Tree Physiology 14, 1351-1366 

  17. Heath, R. L. and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198 

  18. Iglesias, D. J., A. Calatayud, Barreno, E. Primi-Millo, and M. Talon, 2006. Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131 

  19. Inclan, R., A. Ribas, M. Pujadas, J. Teres, and B. S. Gimeno, 1999: The relative sensitivity of different Mediterranean plant species to ozone exposure. Water, Air, and Soil Pollution 116, 273-277 

  20. Karnosky, D. F., J. M. Skelly, K. E. Percy, and A. H. Chappelka, 2007: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147, 489-506 

  21. Kelting, D. L., J. A. Burger, and G. S. Edwards, 1995: The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.). Forest Ecology and Management 769, 197-206 

  22. Kim, P. G., and E. J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133 

  23. Knudson, L. L., T. W. Tibbitts, and G. E., Edwards, 1977: Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiology 60, 606-608 

  24. Kubo, A., H., Saji, K. Tanaka, and N. Kondo, 1995: Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Molecular Biology 29, 479-489 

  25. Long, S. P., and S. P. Naidu, 2002: Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. Air pollution and plant Life, J. N. B. Bell, and M. Treshow (Eds.), Wiley, London, 69-88 

  26. Lichtenthaler, H. K., 1987: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350-382 

  27. Lee, J. C., S. H. Han, P. G. Kim, S. S. Jang, and S. Y. Woo, 2003: Growth, physiological responses and ozone uptake of five Betula species exposed to ozone. Korean Journal of Ecology 26, 165-172 

  28. Mills, G., G. Ball, F. Hayes, J. Fuhrer, L., Skarby, L., B. Gimeno. L. De Temmerman, and A. Heagle, 2000: Development of a multi-factor model for predicting the effects of ambient ozone on the biomass of white clove. Environmental Pollution 109, 533-542 

  29. Ministry of Environment, 2005: Annual report of air quality in Korea 2004, 145pp. 

  30. Minnocci, A., A. Pannicucci, L. Sebastiani, G. Lorenzini, and C. Vitagliano, 1999: Physiological and morphological responses of olive plants to ozone exposure during a growing season. Tree Physiology 19, 391-397 

  31. Muller-Edzards, C., W. De Nries, and J. W. Erisman, 1997: Ten years of monitoring forest condition in Europe. UN/ECE-EC Technical Background Report. Brussels, Geneva: EC-UN/ECE 

  32. Nakano, Y., and K. Asada, 1981: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22, 867-880 

  33. Paakkonen, E., J. Vahala, M. Pohjola, T. Holopainen, and L. Karenlampi, 1998: Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth) are modified by water stress, Plant, Cell & Environment 21, 671-684 

  34. Paoletti, E., C. Nali, R. Marabottini, G. Della Rocca, G. Lorenzini, A. R. Paolacci, M. Ciaffi, and M. Badiani, 2003: Strategies of response to ozone in Mediterranean evergreen species. Establishing Ozone Critical Levels II. UNECE Workshop Report. IVL report B 1523, IVL Swedish Environmental Research Institute, Goteborg, Sweden, 336-343 

  35. Paoletti, E., G. Seufert, G. Della Rocca, and H. Thomsen, 2007: Photosynthetic responses to elevated $CO_2$ and $O_3$ in Quercus ilex leaves at a natural $CO_2$ spring. Environmental Pollution 147, 516-524 

  36. Prince, A., P. W. Lucas, and P. J. Lea, 1990: Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. Journal of Experimental Botany 41, 1309-1317 

  37. Puckette, M. C., H. Weng, and R. Mahalingam, 2007: Physiological and biochemical responses to acute ozoneinduced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry 45, 70-79 

  38. Ranieri, A., G. D'Urso, C., Nali, G. Lorenzini, and G. F. Soldatini, 1996: Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiologia Plantarum 97, 381-387 

  39. Ranieri, A., G. Ginuntini, F. Ferraro, C., Nali, B., Baldan, G. Lorensini, and G.R. Soldatini, 2001: Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiology and Biochemistry 39, 999-1008 

  40. Ragazzi, A., S. Moricca, and I. Dellavalle, 1998: Status of oak decline studies in Italy and some view of the European situation. Proceedings of Workshop on Disease/Environment Interactions in Forest Decline, Vienna, Austria, 202 

  41. Rao, M. V., C. Paliyath, and D. P. Ormrod, 1996: Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110, 125-136 

  42. Ribas, A., J. Penuelas, S. Elvira, and B. S. Gimeno, 2005: Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution 134, 291-300 

  43. Sakaki, T., N. Kondo, and K. Sugahara, 1983: Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiologia Plantarum 59, 28-34 

  44. Samuelson, L. J., J. M. Kelly, and P. A. Mays, 1996: Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasons of ozone exposure. Environmental Pollution 91, 317-323 

  45. Sharma, Y. K. and K. R. Davis, 1997: The effects of ozone on antioxidant responses in plants. Free Radical Biology & Medicine 23, 480-488 

  46. Skarby, L., H. Ro-Poulsen, F. A. M. Wellburn, and L. J. Sheppard, 1998: Impacts of ozone on forests: a European perspective. New Phytologist 139, 109-122 

  47. Sousa Santos, M. N. D, and A. M. Moura Martins, 1993: Cork oak decline. Notes regarding damage and incidence of Hypexylon mediterraneum. Recent advances in Studies on Oak Decline. N.P. Luisi, A. Lerario, and B. Nannini (Eds), Italy: Universita degli Studi, Dipartmento di by Patologia vegetale, 115-121 

  48. Tauz, M., K. Herbinger, S. Posch, and N. E. Grulke, 2002: Antioxidant status of Pinus jeffreyi needles from mesic and xeric microsites in early and late summer. Phyton-Annales Rei Botanicae 42, 201-207 

  49. Thomas, F. M., R. Blank, and G. Hartmann, 2002: Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32, 277-307 

  50. Vitale, M., E. Calvatori, F. Voreto, S. Fares, and F. Manes, 2008: Physiological responses of Quercus ilex leaves to water stress and acute ozone exposure under controlled conditions. Water, Air, and Soil Pollution 189, 113-125 

  51. Weinstein, A., L. J. Samuelson, and M. A. Arthur, 1998: Comparison of the response of red oak (Quercus rubra) seedlings and mature trees to ozone exposure using simulation modeling. Environmental Pollution 102, 307-320 

  52. Wullschleger, S. D., P. J. Hanson, and G. S. Edwards, 1996: Growth and maintenance respiration in leaves of northern red oak seedlings and mature trees after three years of ozone exposure. Plant Cell and Environment 19, 577-584 

  53. Yoshida, M., Y. Nouchi, and S. Toyama, 1994: Studies on the role of active oxygen in ozone in injury to plant cells. I. Generation of active oxygen in rice protoplast exposed to ozone. Plant Science 95, 197-205 

  54. Zheng, Y., H. Shimizu, and J. D. Barnes, 2002: Limitations to $CO_2$ assimilation in ozone-exposed leaves of Plantago major. New Phytologist 155, 67-78 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로