최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Korean journal for food science of animal resources = 한국축산식품학회지, v.29 no.6, 2009년, pp.659 - 667
정호정 (세종대학교 식품공학과) , 민복기 (세종대학교 식품공학과) , 곽해수 (세종대학교 식품공학과)
Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis du...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
카제인은 무엇인가? | 2%의 단백질을 포함하는데 그 중 80%는 카제인이며, 20%는 유청단백질이다. 카제인은 산 불용성의 인단백질이며(Fox and Brodkorb, 2008), α-, β-, κ-카제인으로 분류된다. 그리고 유청단백질은 구형을 띄며 카제인보다 물에서 잘 용해되는데(Haug et al. | |
카제인은 무엇으로 분류되는가? | 2%의 단백질을 포함하는데 그 중 80%는 카제인이며, 20%는 유청단백질이다. 카제인은 산 불용성의 인단백질이며(Fox and Brodkorb, 2008), α-, β-, κ-카제인으로 분류된다. 그리고 유청단백질은 구형을 띄며 카제인보다 물에서 잘 용해되는데(Haug et al. | |
카제인은 우유에서 단백질의 주요 급원으로 알려져 있는데 이는 체내에서 흡수된 후 여러 생리활성을 지니게 되는데 무엇이 있는가? | 카제인은 체내에서 흡수된 후 여러 생리활성을 지니게 된다. 먼저 심장혈관계에서 카제인 유래 펩타이드는 ACE 저해활성을 가지므로 고혈압을 예방하는데 도움을 줄 것으로 기대된다. 신경계에서는 opioid 유사물질로서모르핀과 같은 효과를 나타낸다. 면역계에서는 여러 측면에서 면역기능을 조절한다고 알려져 있으며, 마지막으로 영양계에서는 대표적으로 CPP(caseinophosphopeptide) 및 GMP(glycomacropeptide)가 칼슘, 철과 같은 무기질 흡수에 도움을 준다. 이와 같이 카제인 유래 펩타이드의 다양한 생리활성은 다양한 기능성 유제품에 적용되어왔다. |
Aimutis, W. R. (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. J. Nutr. 134, 989S-995S
Ait-Oukhatar, N., Peres, J. M., Bouhallab, S., Neuville, D., Bureau, F., Bouvard, G., Arhan, P., and Bougle, D. (2002) Bioavailability of caseinophosphopeptide-bound iron. J. Lab. Clin. Med. 140, 290-294
Andrews, A. T., Williams, R. J. H., Brownsell, V. L., Isgrove, F. H., Jenkins, K., and Kanekanian, A. D. (2006) $\beta$ -CN-5P and $\beta$ -CN-4P components of bovine milk proteose?peptone: large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234-241
Ardo, Y., Lilbæk, H., Kristiansen, K. R., Zakora, M., and Otte, J. (2007) Identification of large phosphopeptides from $\beta$ -casein that characteristically accumulate during ripening of the semi-hard cheese Herrg ${\aa}$ rd. Int. Dairy J. 17, 513-524
Ashar, M. N. and Chand, R. (2004) Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft 59, 363-366
Blondelle, S. E. and Lohner, K. (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55, 74-87
Bruck, W. M., Graverholt, G., and Gibson, G. R. (2003) A two-stage continuous culture system to study the effect of supplemental α-lactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with
Buikofer, U., Meyer, J., Sieber, R., and Wechsler, D. (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semihard and soft cheeses. Int. Dairy J. 17, 968-975
Clare, D. A. and Swaisgood, H. E. (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187-1195
Cross, M. L., Mortensen, R. R., Kudsk, J., and Gill, H. S. (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen- primed mice. Med. Microbiol. Immunol. 191, 49-53
del Mar Contreras, M., Carron, R., Montero, M. J., Ramos, M., and Recio, I. (2009) Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19, 566-573
Dziuba, J., Minkiewicz, P., Nalecz D., and Iwaniak, A. (1999) Database of biologically active peptide sequences. Nahrung. 43, 190-195
Erdmann, K., Cheung, B. W., and Schroder, H. (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19, 643-654
Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563-566
Ferranti, P., Traisci, M. V., Picariello, G., Nasi, A., Boschi, V., Siervo, M., Falconi, C., Chianese, L., and Addeo, F. (2004) Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 71, 74-87
FitzGerald, R. J. and Meisel, H. (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84, 33-37
FitzGerald, R. J. and Murray, B. A. (2006) Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118-125
Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M.G., and Kloek, J. (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 137, 953-958
Fox, P. F. and Brodkorb, A. (2008) The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18, 677-684
Fuglsang, A., Nilsson, D., and Nyborg, N. C. B. (2003) Characterization of new milk-derived inhibitors of angiotensin converting enzyme in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 18, 407-412
Ganapathy, V., Leibach, F. H., and Yamada, T. (1999) Protein digestion and assimilation. In: Textbook of Gastroenterology. 3rd ed. Yamada, T. (ed). Lippincott Williams and Wilkins ilkins, Philadelphia, PA, USA, pp. 456-467
Ganong, W. F. (1997) Section V. In review of medical physiology, Appleton and Lange, Stamford, CT, USA , pp. 437-481
Garcia-Nebot, M. J., Alegria, A., Barbera, R., Clemente, G., and Romero, F. (2009) Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability? Food Chem. doi:10.1016/j.foodchem.2009.06.005
Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., and Addeo, F. (2000) Production of angiotensin-I-convertingenzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66, 3898-3904
Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., and Cagno, R. D. (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42, 223-239
Gray, G. M. and Cooper, H. L. (1971) Protein digestion and absorption. Gastroenterology 61, 535-544
Grimble, G. K. (2000) Mechanisms of peptide and amino acid transport and their regulation. Furst, P., and Young, V. (eds.), In proteins, peptides and amino acids in enteral nutrition, Karger and Nestec, Basel, Switzerland, pp. 63-88
Hata, Y., Yamamoto, M., Ohni, M., Nakajima, K., Nakamura, Y., and Takano, T. (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am. J. Clin. Nutr. 64, 767-771
Haug, A., Høstmark, A. T., and Harstad, O. M. (2007) Bovine milk in human nutrition-a review. Lipids Health Dis. 6, 25-41
Hern $\acute{a}$ ndez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52, 1504-1510
Iwan, M., Jarmolowska, B., Bielikowicz, K., Kostyra, E., Kostyra, H., and Kaczmarski, M. (2008) Transport of i-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Peptides 29, 1042-1047
Jauhiainen, T. and Korpela, R. (2007) Milk peptides and blood pressure. J. Nutr. 137, 825S-829S
Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyronpalo, S., Rasmussen, M., and Korpela, R. (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 18, 1600-1605
Jolles, P., Parker, F., Floch, F., Migliore, D., Alliel, P., Zerial, A., and Werner, G. H. (1981) Immunostimulating substances from human casein. Immunopharmacol. Immunotoxicol. 3, 363-370
Juillard, V., Guillot, A., Le Bars, D., and Gripon, J. C. (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl. Environ. Microbiol. 64, 1230-1236
Kelleher, S. L., Chatterton, D., Nielsen, K., and Lonnerdal, B. (2003) Glycomacropeptide and $\alpha$ -lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 77, 1261- 1268
Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Crit Rev. Food Sci. Nutr. 43, 607 - 633
Korhonen, H. (2009) Milk-derived bioactive peptides: from science to applications. J. Funct. Foods 1, 177-187
Korhonen, H. and Pihlanto-Leppala, A. (2003a) Bioactive peptides: novel applications for milk proteins. Appl. Biotech. Food Sci. Policy 1, 133-144
Korhonen, H. and Pihlanto-Leppala, A. (2003b) Foodderived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308
Korhonen, H. and Pihlanto-Leppala, A. (2004) Milk-derived bioactive peptides: formation and prospects for health promotion. In hand-book of functional dairy products. Functional foods and nutraceuticals series 6.0, Shortt, C. and
Kostyra, E., Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., and Kostyra, H. (2004) Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci. 13, 25-35
Leclerc, P. L., Gauthier, S. F., Bachelard, H., Santure, M., and Roy, D. (2002) Antihypertensive activity of caseinenriched milk fermented by Lactobacillus helveticus. Int. Dairy J. 12, 995-1004
Matar, C., Valdez, J. C., Medina, M., Rachid, M., and Perdigon, G. (2001) Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J. Dairy Res. 68, 601-609
Meisel, H. and FitzGerald, R. J. (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9, 1289-1295
Meisel, H. and FitzGerald, R. J. (2000) Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 84, 27-31
Moller, N. P., Scholz-Ahrens, K. E., Roos, N., and Schrezenmeir, J. (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47, 171-182
Nielsen, M. S., Martinussen, T., Flambard, B., Sorensen, K. I., and Otte, J. (2009) Peptide profiles and angiotensin I converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155-165
Ondetti, M. A. and Cushman, D. W. (1982) Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283-308
Ong, L. and Shah, N. P. (2008) Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 41, 1555-1566
Otani, H., Kihara, Y., and Park, M. (2000) The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. Food Agr. Immunol. 12, 165 - 173
Parrot, S., Degraeve, P., Curia, C., and Martial-Gros, A. (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung. 47, 87-94
Pauliina, J., Jauhiainen, T., Korpela, R., and Vapaatalo, H. (2009) Milk protein-derived bioactive tripeptides Ile-Pro- Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J. Funct. Foods 1, 266-273
Phelan, M., Aherne, A., FitzGerald, R. J., and O'Brien, N. M. (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643-654
Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. T., and Karp, M. (1999) The effect of $\alpha$ -lactalbumin and $\beta$ -lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103 J. Appl. Microbiol. 87, 540-545
Quir, A., Davalos, A., Lasunci, M. A., Ramos, M., and Recio, I. (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int. Dairy J. 18, 279-286
Reichelt, K. L. and Knivsberg, A. M. (2003) Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr. Neurosci. 6, 19-28
Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M., and Haller, D. (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germfree
Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., and Itoh, T. (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83, 1434-1440
Sashihara, T., Sueki, N., and Ikegami, S. (2006) An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J. Dairy Sci. 89, 2846-2855
Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., and Shimizu, M. (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem.
Saxena, P. R. (1992) Interaction between the renin-angiotensin- aldosterone and sympathetic nervous systems. J. Cardiovasc. Pharmacol. 19 Suppl 6, S80-8
Seppo, L., Jauhiainen, T., Poussa, T., and Korpela, R. (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326-330
Shimizu, M. (2004) Food-derived peptides and intestinal functions. Bio. Factors 21, 43-47
Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Bielikowicz, K. (2009a) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19, 252-257
Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Iwan, M. (2009b) Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19, 258-263
Silva, S. V. and Malcata, F. (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15, 1-15
Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69, 103-111
Sipola, M., Finckenberg, P., Santisteban, J., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2001) Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52, 745-754
Sun, H., Liu, D., Li, S., and Qin, Z. (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys- Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 73, 293-298
Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmir, Z., and Fregly, M. (2003) Relation of β-casomorphin to apnea in sudden infant death syndrome. Peptides 24, 937-943
Teschemacher, H. (2003) Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 9, 1331-1344
Ueno, K., Mizuno, S., and Yamamoto, N. (2004) Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides in Lactobacillus helveticus CM4. Lett. Appl. Microbiol. 39, 313-318
Vermeirssen, V., Camp, J. V., and Verstraete, W. (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92, 357-366
Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.