$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

정수처리에서의 생물활성탄 공정
Biological Activated Carbon (BAC) Process in Water Treatment 원문보기

대한환경공학회지 = Journal of Korean Society of Environmental Engineers, v.31 no.4, 2009년, pp.308 - 323  

손희종 (부산시상수도사업본부 수질연구소) ,  유수전 (부산시상수도사업본부 수질연구소) ,  노재순 (부산시상수도사업본부 수질연구소) ,  유평종 (부산시상수도사업본부 수질연구소)

초록
AI-Helper 아이콘AI-Helper

생물활성탄 공정은 정수처리에서 획기적인 공정으로 평가받고 있으며, 전 세계적으로 많은 정수장에서 BAC 공정을 채택하여 운전하고 있다. BAC 공정의 장점은 활성탄에 흡착된 오염물질들이 활성탄 표면에서 서식하고 있는 다양한 미생물 집합체(생물막)에 의해 생물분해되어 자연적으로 활성탄의 재생이 이루어져 활성탄 사용기간의 연장을 유도하여 정수처리 비용을 감소시킬 수 있다는 것이다. 또한, 유입수중의 생분해 가능한 유기물질들을 제거하여 배 급수관망에서 미생물의 재성장을 억제하는데 탁월하다. 그러나 BAC 공정의 효율이 활성탄 표면에 형성되어 있는 생물막에 의해 제한되어지는 문제점도 있다. 본 논문에서는 GAC에서 BAC로의 전환, BAC 생물막의 특성, 오염물질의 제거 메카니즘, BAC 공정에 영향을 미치는 인자들, BAC 공정의 제어 및 BAC 공정의 모델링에 대해 크게 여섯 부분으로 상세하게 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

This review paper serves to describe the composition and activity of biological activated carbon (BAC) biofilm which is considered as a progressive process for water treatment. As well as several physical-chemical, biochemical and microbiological analysis methods for characterizing the composition a...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
상수원수로 사용되는 하천수, 호소수 및 지하수에는 어떠한 물질들이 함유되어 있는가? 상수원수로 사용되는 하천수, 호소수 및 지하수에는 천연유기물질(natural organic matter, NOM), 병원성 미생물, 유기화합물질류 및 중금속류 등 다양한 오염물질들이 함유되어 있다.1) 이런 오염물질들은 먹는물 수질기준을 충족시키기 위해서 반드시 제거되어야 한다.
재래식 정수처리 공정은 어떻게 구성되는가? 1) 이런 오염물질들은 먹는물 수질기준을 충족시키기 위해서 반드시 제거되어야 한다. 국내에서 운영되는 대부분의 정수장은 응집-침전-모래여과-소독공정으로 구성된 재래식 정수처리 공정(conventional water treatment process)으로 운영되고 있으며, 이 공정은 입자성 물질, 병원성 미생물 및 색도 유발물질의 제거에 초점이 맞추어져 있다.2) 재래식 정수처리 공정에서는 합성 유기화합물질, 이취미 물질 같은 조류대사산물이나 소독부산물 전구물질 같은 용존 유기물질에 대해서는 제거능이 매우 낮다.
재래식 정수처리 공정은 조류대사산물이나 용존 유기물질에 대한 제거능이 낮은데 이를 보안하기 위해 취하는 방법은 무엇인가? 2) 재래식 정수처리 공정에서는 합성 유기화합물질, 이취미 물질 같은 조류대사산물이나 소독부산물 전구물질 같은 용존 유기물질에 대해서는 제거능이 매우 낮다.3∼6) 따라서 정수처리 시 이들에 대해 매우 높은 흡착능을 가지는 활성탄(activated carbon)을 많이 사용한다. 활성탄은 다공성 여재(media)로 목재(wood), 야자각(coconut), 역청탄(bituminous coal), 갈탄(lignite) 등을 원료로 하여 제조되며, 정수 및 하수처리 공정에서도 흡착제로 널리 이용되고 있고, 보통 탁질이나 유기물 농도부하가 적은 여과공정 후단에 입상활성탄(granular activated carbon, GAC) 형태로 많이 적용된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (180)

  1. Nishijima, W. and Speital, G., “Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon,” Chemosphere, 56, 113-119(2004) 

  2. Prescott, L., Harley, J., and Kelin, D., Microbiology, 4th Ed, CB/McGraw-Hill, New York, pp. 157-180(1999) 

  3. Kim, W., Nishijima, W., Shoto, E., and Okada, M., “Pilot plant study on ozonation and biological activated carbon process for drinking water treatment,” Water Sci. Technol., 35(8), 21-28(1997) 

  4. Lai, W., Yeh, H., Tseng, I., Lin, T., Chen, J., and Wang, G., “Conventional versus advanced treatment for eutrophic source water,” J. Am. Water Works Assoc., 94(12), 96-108(2002) 

  5. Randtke, S., “Organic contaminant removal by coagulation and related process combinations,” J. Am. Water Works Assoc., 80(5), 40-56(1988) 

  6. Jacangelo, J. G., DeMarco, J., Owen, D. M., and Randtke, S. J., “Selecting processes for removing NOM,” J. Am. Water Works Assoc., 87(1), 64-77(1995) 

  7. Clark, R. M. and Lykins, B. W., Granular Activated Carbon, Lewis Publishers, Michigan(1989) 

  8. Chestnutt, T. E., Bach, M. T., and Mazyck, D. W., “Improvement of thermal reactivation of activated carbon for the removal of 2-methylisoborneol,” Water Res., 41, 79-86(2007) 

  9. Dussert, B. and Van Stone, G., “The biological activated carbon process for water purification,” Water Eng. Manage., 141(12), 22-24(1994) 

  10. Hubele, C., “Design of fixed bed adsorbers using mathematical models,” Water Supply, 4, 197(1986) 

  11. Sontheimer, H., “The mulheim process,” J. Am. Water Works Assoc., 70(7), 393-396(1978) 

  12. Weber, W. J., Pirbazari, M., and Melson, G. L., “Biological growth on activated carbon: an investigation by scanning electron microscopy,” Environ. Sci. & Technol., 12, 817(1978) 

  13. American Water Works Association, “An assessment of microbial activity on GAC,” J. Am. Water Works Assoc., 73(2), 447-454(1981) 

  14. Servais, P., Billen, G., Ventresque, C., and Bablon, G., “Microbial activity in GAC filters at the Choisy-le-Roy treatment plant,” J. Am. Water Works Assoc., 83(2), 62-68(1991) 

  15. Rittmann, B. E. and Snoeyink, V. L., “Achieving biologically stable drinking water,” J. Am. Water Works Assoc., 76(10), 106(1984) 

  16. Maloney, S. W., Bancroft, K., Pipes, W. O., and Suffet, L. H., “Bacterial TOC removal on sand and GAC,” J. Environ. Eng., 110, 519-533(1984) 

  17. Bundermann, G., “30 years of RWW's practical experience with an advanced microbiological water treatment system for Ruhr river water,” In Recent Progress in Slow Sand and Alternative Biofiltration Processes, Gimbel, N. J., Graham, D., and Collins, M. R., Eds., IWA Publishing, London, pp. 30-38(1996) 

  18. Scholz, M. and Martin, R., “Ecological equilibrium on biological active carbon,” Water Res., 31(12), 2959∼2968(1997) 

  19. Takeuchi, Y., Mochidzuki, K., Matsunobu, N., Kojima, R., Motohashi, H., and Yoshimoto, S., “Removal of organic substances from water by ozone treatment followed by biological active carbon treatment,” Water Sci. Technol., 35(7), 171-178(1997) 

  20. Servais, P., Billen, G., Bouillot, P., and Benezet, M., “A pilot study of biological GAC filtration in drinkingwater treatment,” Aqua, 41(3), 163-168(1992) 

  21. Boley, A., Unger, B., Muller, W. R., Kuck, B., and Deger, A., “Biological drinking water treatment for nitrate and pesticide (endosulfan) elimination,” Water Sci. & Technol: Water Suppl., 6(3), 123-127(2006) 

  22. Nerenberg, R., Rittmann, B. E., and Soucie, W. J., “Ozone/biofiltration for removing MIB and geosmin,” J. Am. Water Works Assoc., 92(12), 85-100(2000) 

  23. Graham, N., “Removal of humic substances by oxidation/biofiltration processes-a review,” Water Sci. Technol., 40(9), 141-148(1999) 

  24. Ghosh, U., Weber, A., Jensen, J., and Smith, J., “Granular activated carbon and biological active carbon treatment of dissolved and sorbed polychlorinated biphenyls,” Water Environ. Res., 71(2), 232-240(1999) 

  25. Sakoda, A., Wang, J., and Suzuki, M., “Microbial activity in biological active carbon bed by pulse responses,” Water Sci. Technol., 34(5-6), 213-222(1996) 

  26. Schreiber, H., Schoenen, D., and Traunspurger, W., “Invertebrate colonization of granular activated carbon filters,” Water Res., 31, 743-748(1997) 

  27. 손희종, 노재순, 김상구, 배석문, 강임석, “활성탄 공정에서의 염소 소독부산물 제거특성,” 대한환경공학회지, 27(7), 762-770(2005) 

  28. Adamson, A. W., Physical Chemistry of Surfaces, 4th Ed., John Wiley & Sons, New York(1982) 

  29. Bjelopavlic, M., Newcombe, G., and Hayes, R., “Adsorption of NOM onto activated carbon: effect of surface charge, ion strength and pore volume distribution,” J. Colloid Interface Sci., 210, 271-280(1999) 

  30. Hand, D. W., Crittenden, J. C., and Thacker, W. E., “User-oriented solutions to the homogeneous surface diffusion model for adsorption process design calculations: part 1 batch reactor solutions,” 54th Annual Conference of the Water Pollution Control Federation, Detroit, Michigan(1982) 

  31. Servais, P., Billen, G., and Bouillot, P., “Biological colonization of granular activated carbon filters in drinking-water treatment,” J. Environ. Eng., 120(4), 888-899(1994) 

  32. Kim, W., Nishijima, W., Shoto, E., and Okada, M., “Competitive removal of biodegradable dissolved organic carbon in ozonation-biological activated carbon,” Water Sci. Technol., 35, 147-153(1997) 

  33. 손희종, 최근주, 김상구, “활성탄 공정과 생물여과 공정 에서의 자연유기물질 제거특성,” 대한환경공학회지, 29(2), 205-213(2007) 

  34. Rhim, J., “Characteristics of adsorption and biodegradation of dissolved organic carbon in biological activated carbon pilot plant,” Korean J. Chem. Eng., 23(1), 38-42(2006) 

  35. Wang, J. Z., Summers, R. S., and Miltner, R. J., “Biofiltration performance: part 1, relationship to biomass,” J. Am. Water Works Assoc., 87(12), 55-63(1995) 

  36. Griffini, O., Bao, M. L., Barbieri, K., Burrini, D., Santianni, D., and Pantani, F., “Formation and removal of biodegradable ozonation by-products during ozonationbiofiltration treatment: pilot scale evaluation,” Ozone Sci. Eng., 21, 79-98(1999) 

  37. Najm, I., Kennedy, M., and Naylor, W., “Lignite versus bitminous GAC for biofiltration-a case study,” J. Am. Water Works Assoc., 97(1), 94-101(2005) 

  38. Push, A., Losh, D., and Speitel Jr, G. E., “Removal of non-biodegradable chemicals from mixture during granular activated carbon bioregeneration,” J. Environ. Eng., 131(2), 196-205(2005) 

  39. Babi, K., Koumenides, K., Nikolaou, A., Makri, C., Tzoumerkas, F., and Lekkas, T., “Pilot study of the removal of THMs, HAAs and DOC from drinking water by GAC adsorption,” Desalination, 210(1-3), 215-225 (2007) 

  40. Xie, Y., and Zhou, H., “Use of BAC for HAA removal-part 2, column study,” J. Am. Water Works Assoc., 94(5), 126-134(2002) 

  41. Sontheimer, H. and Hubele, C., “The use of ozone and granular activated carbon in drinking water treatment,” Huck, P. M. and Toft, P.(Eds.), In Treatment of Drinking Water Organic Contaminants, Pergamon Press, Oxford, UK. pp. 7-8(1987) 

  42. Werner, P., Mikrobiologische Untersuchungen der Aktivkohlefilter zur Trinkwasserau fbereitung, Publication No. 19, Department of Water Chemistry, Engler-Bunte Institute, University of Karlsruhe, Karlsruhe, Germany, (1982) 

  43. Moll, S. M., Summers, R. S., and Breen, A., “Microbial characterization of biological filters used for drinking water treatment,” Appl. Environ. Microbiol., 64(7), 2755-2759(1998) 

  44. Branda, S., Vik, A., Friedman, L., and Kolter, R., “Biofilms: the matrix revisited,” Trends Microbiol., 13, 20-26(2005) 

  45. Lazarova, V. and Manem, J., “Biofilm characterization and activity analysis in water and wastewater treatment,” Water Res., 29(10), 2227-2245(1995) 

  46. Goodwin, J. and Forster, F., “A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics,” Water Res., 19, 527-533(1985) 

  47. Horan, N. and Eccles, C., “Purification and characterization of extracellular polysaccharide from activated sludges,” Water Res., 20, 1427-1432(1986) 

  48. 손희종, 박홍기, 이수애, 정은영, 정철우, “생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성,” 대한환경공학회지, 27(12), 1311-1320(2005) 

  49. de Beer, D. and Stoodley, P., “Relation between the structure of anaerobic biofilm and transport phenomena,” Water Sci. Technol., 32, 11-18(1995) 

  50. Bryers, J. and Characklis, W., “Early fouling biofilm formation in a turbulent flow system: overall kinetics,” Water Res., 15, 483-491(1981) 

  51. Harris, C. and Kell, D., “The estimation of microbial biomass,” Biosensors, 1, 17-84(1985) 

  52. Okabe, S., Kokazi, T., and Watanabe, Y., “Biofilm formation potentials in drinking waters treated by different advanced treatment processes,” Water Sci. Technol: Water Suppl., 2(4), 97-104(2002) 

  53. Fry, J. C., “Determination of biomass,” Austin, B.(Ed.), In Methods in Aquatic Bacteriology, John Wiley & Sons, Inc., Chichester, pp. 27-72(1988) 

  54. Findlay, R. H., King, G. M., and Watling, L., “Efficacy of phospholipid analysis in determining microbial biomass in sediments,” Appl. Environ. Microbiol., 55(11), 2888-2893(1989) 

  55. Magic-Knezev, A. and van der Kooij, D., “Optimization and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment,” Water Res., 38(18), 3971-3979(2004) 

  56. Atlas, R., “Enumeration and estimation of microbial biomass,” Burns, R. and Slater, J.(Eds.), In Experimental Microbial Ecology, Blackwell Scientific, Oxford, pp. 84-101(1982) 

  57. Moll, D. M., Summers, R. S., Fonseca, A. C., and Matheis, W., “Impact of temperature on drinking water biofilter performance and microbial community structure,” Environ. Sci. Technol., 33(14), 2377-2382(1999) 

  58. Amann, R., Ludwig, W., and Schleifer, K. H., “Phylogenetic in situ defection of individual microbial cells without cultivation,” Microbial. Rev., 59, 143-169(1995) 

  59. Gibride, K. A., Lee, D. Y. and Beaudette, L. A., “Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control,” J. Microbiol. Methods, 66, 1-20(2006) 

  60. Dorigo, U., Volatier, L. and Humbert, J.F., “Molecular approaches to the assessment of biodiversity in aquatic microbial communities,” Water Res., 39, 2207-2218(2005) 

  61. H $\ddot{o}$ rsch, P., Gorenflo, A., Fuder, C., Deleage, A., and Frimmel, F. H., “Biofouling of ultra- and nanofiltration membranes for drinking water treatment characterized by fluorescence in situ hybridization (FISH),” Desalination, 172, 41-52(2005) 

  62. Saiki, Y., Katami, A., and Kitagawa, Y., “Factual analysis of granule flotation in brewery wastewater treatment plants by the fluorescence in situ hybridization hybridization method,” J. Biosci. Bioeng., 95(2), 188-191(2003) 

  63. Lehman, R. M. and O'Connell, S. P., “Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium column,” Appl. Environ. Microbiol., 68(4), 1569-1575(2002) 

  64. Calvo-Bado, L. A., Pettitt, T. R., Parsons, N., Petch, G. M., Morgan, A. W., and Whipps, J. M., “Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water,” Appl. Environ. Microbiol., 69(4), 2116-2125(2003) 

  65. Trebesius, K., Amann, W., Ludwig, W., Mhlegger, K. and Schleifer, K. H., “Identification of whole fixed bacterial cells with nonradioactive rRNA targeted transcript probes,” Appl. Environ. Microbiol., 60, 3228-3235(1994) 

  66. Melin, E., Eikebrokk, B., Brugger, M., and Odegaard, H., “Treatment of humic surface water at cold temperatures by ozonation and biofiltration,” Water Sci. Technol.: Water Supply, 2(5-6), 451-457(2002) 

  67. Fonseca, A. C., Summers, R. S., Hernandez, M. T., “Comparing measurements of microbial activity in drinking water biofilters,” Water Res., 35(16), 3817-3824(2001) 

  68. Liu, X., Huck, P. M., and Slawson, R. M., “Factors affecting drinking water biofiltration,” J. Am. Water Works Assoc., 93(12), 90-101(2001) 

  69. Dagostino, L., Goodman, A., and Marshall, K., “Physiological responses induced in bacteria adhering to surfaces,” Biofouling, 4, 113-119(1991) 

  70. Manem, J., Interactions between Heterotrophic and Autotrophic Bacteria in Fixed Film Biological Processes Used in Drinking Water Treatment, Ph. D. Thesis, University of Illinois, Urbana, Illinois(1988) 

  71. Blenkinsopp, S. and Costerton, J., “Understanding bacterial biofilms,” TIBTECH, 9, 138-143(1991) 

  72. Pederson, G., “Biofilm development on stainless steel and PVC surfaces in drinking water,” Water Res., 24, 239-243(1990) 

  73. Nouvion, N., Block, J., and Faup, G., “Effect of biomass quantity and activity on TOC removal in a fixedbed reactor,” Water Res., 21(1), 35-40(1987) 

  74. Jorgensen, P., Eriksen, T., and Jensen, B., “Estimation of viable biomass in wastewater and activated sludge by determination of ATP, oxygen utilization rate and FDA hydrolysis,” Water Res., 26, 1495-1501(1992) 

  75. Lazarova, V., Pierzo, V., Fontvielle, D., and Manem, J., “Integrated approach for biofilm characterization and biomass activity control,” Water Sci. Technol., 29(7), 345-354(1994) 

  76. Zinbei, S. and Henrietle, C., “Identification and characterization of bacterial activities involved in wastewater treatment by aerobic fixed bed reactor,” Water Res., 28(12), 2575-2582(1994) 

  77. Bihan, Y. and Lessard, P., “Influence of operational variables on enzymatic tests applied to monitor the microbial biomass activity of a biofilter,” Water Sci. Technol., 37(4-5), 199-202(1998) 

  78. Bihan, Y., “Monitoring biofilter clogging: biochemical characteristics of the biomass,” Water Res., 34(17), 4284-4294(2000) 

  79. Andreottola, G., Foladori, P., Gelmini, A., and Ziglio, G., “Biomass active fraction evaluated by direct method and respirometric techniques,” Water Sci. Technol., 46(1-2), 371-379(2002) 

  80. Jeffrey, W. and Paul, J., “Underestimation of DNA synthesis by thymidine incorporationin marine bacterial,” Appl. Environ. Microbiol., 54(10), 3165-3168(1988) 

  81. Booth, S. D. J., Huck, P. M., Bulter, B. J., and Slawson, R. M., “A mechanistic approach for modeling the removal of ozonation byproducts in biologically active filters,” In Proceedings of Am. Water Works Assoc., WQTC, Denver(1995) 

  82. Hozalski, R. M. and Bouwer, E. J., “Non-steady state simulation of BOM removal in drinking water biofilters: model development,” Water Res., 35(1), 198-210 (2001) 

  83. Carlson, G. and Silverstein, J., “Effect of ozonation on sorption of natural organic matter by biofilm,” Water Res., 31(10), 2467-2478(1997) 

  84. Stewart, P., “Diffusion in biofilms,” J. Bacteriol., 185(5), 1485-1491(2003) 

  85. Sontheimer, H., Crittenden, J., and Summer, R., Activated Carbon Adsorption for Water Treatment, American Water Works Association-DVGW Forschungsstelle Engler Bunte Institute, Karlsruhe(1988) 

  86. de Beer, D., Stoodley, P., Roc, F., and Lewandowski, Z., “Liquid flow in biofilm system,” Appl. Environ. Microbiol., 60(8), 2711-2716(1994) 

  87. de Beer, D., Stoodley, P., and Lewandowski, Z., “Measurements of local diffusion coefficients in biofilms by microinjection and confocal microscopy,” Biotechnol. Bioeng., 53, 151-158(1997) 

  88. Stoodley, P., Boyle, J., de Beer, D., and Lappin-Scott, M., “Evolving perspectives of biofilm structure,” Biofouling, 14(1), 75-90(1999) 

  89. Drury, W., Characklis, W., Stewart, P., “Interaction of 1 $\mu$ m latex particles with Pseudomonas aeruginosa biofilms,” Water Res., 27, 1119(1993) 

  90. Weber, W., “Preloading, competition, adsorption analysis, ideal adsorption solution theory,” Biological Activated Carbon Filtration Workshop, International Water Association, Delft University of Technology, The Netherlands, May 29-31(2002) 

  91. Klimenko, N., Winter-Nielsen, M., Smolin, S., Nevynna, L., and Sydorenko, J., “Role of the physicochemical factors in the purification process of water from surface-active matter by biosorption,” Water Res., 36(20), 5132-5140(2002) 

  92. Billen, G., Servais, P., Bouillot, P., and Ventresque, C., “Functioning of biological filters used in drinking water treatment-the Chabrol model,” J. Water SRT-Aqua, 4, 231-241(1992) 

  93. Nayar, S. C. and Sylvester, N. D., “Control of phenol in biological reactors by addition of powdered activated carbon,” Water Res., 13, 201(1979) 

  94. Ridgway, H. F. and Olsan, B. H., “Scanning electron microscope evidence for bacterial colonization of drinking water distribution system,” Appl. Environ. Microbiol., 41, 274-287(1981) 

  95. Chang, H. T. and Rittmann, B. E., “Mathematical modeling of biofilm on activated carbon,” Environ. Sci. Technol., 21(3), 273(1987) 

  96. Shvetsov, V. and Morozova, K., “Biosorbers-perspective installations for deep purification of natural and waste waters,” Vodosnabzh. Sanit. Tekh., 1, 4-12(1998) 

  97. Aktas, O. and Cecen, F., “Bioregeneration of activated carbon: a review,” Int. Biodeter. Biodegr., 59(4), 257-272(2007) 

  98. Klimenko, N., Marutovsky, R., Pidlisnyuk, V., Neyinnaya, L., Smolin, S., Kohlmann, J., and Radeke, K., “Biosorption processes for natural and wastewater treatment-part 1,” Eng. Life Sci., 2(10), 317-324(2002) 

  99. Rice, R. and Robson, M., Biological Activated Carbon- Enhanced Aerobic Biological Activity in GAC System, Ann Arbor Science Publ., Ann Arbor, MI. USA.(1982) 

  100. Chudyk, W. A. and Snoeyink, V. L., “Bioregeneration of activated carbon saturated with phenol,” Environ. Sci. Technol., 18(1), 1-5(1984) 

  101. Speitel Jr, G. E. and DiGiano, F. A., “The bioregeneration of GAC used to treat micropollutants,” J. Am. Water Works Assoc., 79(1), 64-73(1987) 

  102. Olmstead, K. P. and Weber, W. J., “Interactions between microorganisms activated carbon in water and waste treatment operations,” Chem. Eng. Communic., 108, 113-125(1991) 

  103. Speitel Jr, G. E., Turakhia, M. H., and Lu, C. J., “Initiation of micropollutant biodegradation in virgin GAC columns,” J. Am. Water Works Assoc., 81(4), 168-176(1989) 

  104. Namkung, E. and Rittmann, B. E., “Soluble microbial products(SMP) formation kinetics by biofilms,” Water Res., 20(6), 795-806(1986) 

  105. Noguera, D. R., Araki, N., and Rittmann, B. E., “Soluble microbial products(SMP) in anaerobic chemostats,” Biotechnol. Bioeng., 44, 1040-1051(1994) 

  106. Uhl, W., “Modeling bioreactors for drinking water treatment,” Presentation of slide at International Workshop Modeling, Delft University of Technology, The Netherlands, June 22-23(2006) 

  107. Ola $\acute{n}$ czuk-Neyman, K. and Prejzner, J., “Application of biological processes for manganese elimination from groundwater,” Biotechnologia, 27, 154-163(1994) 

  108. Madoni, P., Davoli, D., Fontani, N., Cucci, A., Pedroni, M., and Rossi, F., “Spatial distribution of microorganisms and measurements of oxygen uptake rate and ammonia uptake rate activity in a drinking water biofilter,” Environ. Technol., 22, 455-465(2001) 

  109. Katsoyiannis, I. A. and Zouboulis, A. I., “Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic concentrations and product characterization,” Water Res., 38, 1922-1932(2004) 

  110. Kirisits, M. J., Snoeyink, V. L., Chee-sanford, J. C., Daugherty, B. J., Brown, J. C., and Raskin, L., “Effects of operating conditions on bromate removal efficiency in BAC filters,” J. Am. Water Works Assoc., 94(4), 182-193(2002) 

  111. 손희종, 유수전, 유평종, 정철우, “BAC 공정에서 EBCT 와 수온에 따른 HAA 제거 특성,” 대한환경공학회지, 30(12), 1255-1261(2008) 

  112. Ho, L., Meyn, T., Keegan, A., Hoefel, D., Brookes, J., Saint, C. P., and Newcombe, G., “Bacterial degradation of microcystin toxins within a biologically active sand filter,” Water Res., 40, 768-774(2006) 

  113. Terauchi, N., Ohtani, T., Yamanaka, K., Tsuji, T., Sudou, T., and Ito, K., “Studies on a biological filter for musty odor removal in drinking water treatment processes,” Water Sci. Technol., 31(11), 229-235(1995) 

  114. Sinha, S., Westerhoff, P., Kommineni, S., Sharp, V., and Chowdhury, Z., “Removing musty/earthy taste and odor using ozone-associated biofiltration: pilot study findings and full-scale implementation issues,” In Proceedings of Am. Water Works Assoc., WQTC, Nov. 2-6, Philadelphia, Pennsylvania(2003) 

  115. Elhadi, S. L. N., Huck, P. M., and Slawson, “Impact of biomass concentrations on the removal of earthy/musty odors from drinking water by biological filters,” In Proceedings of Am. Water Works Assoc., WQTC, June 13∼17, Orlando, Florida(2004) 

  116. Meyer, K., Summers, R., Westerhoff, P., and Wetz, D., “Biofiltration for geosmin and MIB removal,” In Proceedings of Am. Water Works Assoc., Annual Conference, San Francisco, California(2005) 

  117. Sedlak, D., Gray, J. L., and Pinkston, A. K. E., “Understanding contaminants in recycled water,” Environ. Sci. Technol., 34(23), 508-515(2000) 

  118. Choi, K, J., Kim, S. G., Kim, C. W., and Kim, S. H., “Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A,” Chemosphere, 58, 1535-1545 (2005) 

  119. Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H. J., Gulde, B. H., Preuss, G., Wilme, U., and Seibert, N. Z., “Removal of pharmaceuticals during drinking water treatment,” Environ. Sci. Technol., 36, 3855-3863(2002) 

  120. 손희종, 황영도, 유평종, “생물활성탄 공정에서 tetracycline, xytetracycline, trimethoprime 및 caffeine 제거특성,” 대한환경공학회지, 31(2), (2009) 

  121. 손희종, 정종문, 노재순, 유평종, “생물활성탄 공정에서 의 sulfonamide계 항생물질 제거특성,” 대한환경공학회지, 31(2), (2009) 

  122. Grabi $\acute{n}$ ska-Loniewska, A., Perchu $\acute{c}$ , M., and Korni ${\l}$ owicz-Kowalska, T., “Biocenosis of BACFs used for groundwater treatment,” Water Res., 38, 1695-1706(2004) 

  123. Westerhoff, P., Summers, R., Chowdhury, Z., and Kommineni, S., Ozone-Enhanced Biofiltration for Geosmin and MIB Removal, Am. Water Works Assoc. Research Foundation, Denver, CO.(2005) 

  124. Nishijima, W., Shoto, E., and Okada, M., “Improvement of biodegradation of organic substances by addition of phosphorus in biological activated carbon,” Water Sci. Technol., 36(12), 251-257(1997) 

  125. 손희종, 노재순, 김상구, 강임석, 이용두, “오존처리에 의한 천연유기물질 변화 및 소독부산물 전구물질 제어,” 대한환경공학회지, 27(10), 1099-1107(2005) 

  126. 손희종, 정철우, 최영익, 배상대, “오존처리에 의한 BDO $C_{rapid}$ 와 BDO $C_{slow}$ 생성 특성,” 대한환경공학회지, 28(12), 1274-1279(2006) 

  127. Westerhoff, P., debroux, J., Aiken, G., and Amy, G., “Ozone-induced changes in natural organic matter (NOM) structure,” Ozone Sci. Eng., 21, 551-570(1999) 

  128. Gagnon, G. A., Booth, S. D. J., Peldszus, S., Mutti, D., Smith, F., and Huck, P. M., “Carboxylic acids: formation and removal in full-scale plants,” J. Am. Water Works Assoc., 89(8), 88-97(1997) 

  129. Carlson, K. H. and Amy, G., “BOM removal during biofiltration,” J. Am. Water Works Assoc., 90(12), 42-52(1998) 

  130. DiGiano, F. A. and Harrington, G. W., “Adsorption equilibria of natural organic matter after ozonation,” J. Am. Water Works Assoc., 81(6), 93-101(1989) 

  131. Leisinger, T., Cook, A. M., H $\ddot{u}$ tter, R., and N $\ddot{u}$ esch, J., Microbial Degradation of Xenobiotics and Recalcitrant Compounds, Academic Press, New York(1981) 

  132. Walker, G. M. and Weatherley, L. R., “Bacterial regeneration in biological activated carbon systems,” Trans. IChemE., 76, 177-182(1998) 

  133. DeWaters, J. E. and DiGiano, F. A., “The influence of ozonated natural organic matter on the biodegradation of a micropollutant in a GAC bed,” J. Am. Water Works Assoc., 82(8), 69(1990) 

  134. Janssens, J. G., Meheus, J., and Dirickx, J., “Ozone enhanced biological activated carbon filtration and its effect on organic matter removal, and in particular on AOC reduction,” Water Sci. Technol., 37, 1055-1068 (1984) 

  135. Carlson, K. H. and Amy, G. L., “The relative importance of HLR and EBCT in biofiltration,” In Proceedings of Am. Water Works Assoc., WQTC, New Orleans(1995) 

  136. Klevens, C. M., Collins, M. R., Negm, R., and Farrar, M. F., “Characterization of NOM removal by biological activated carbon,” In Recent Progress in Slow Sand and Alternative Biofiltration Processes, Gimbel, N. J., Graham, D., and Collins, M. R., Eds., IWA Publishing, London, pp. 79-87(1996) 

  137. Carlson, M., Heffernan, K., Ziesemer, C., and Snyder, E., “Comparing two GACs for adsorption and biostabilization,” J. Am. Water Works Assoc., 86(3), 91-102(1994) 

  138. Tan, L. and Johnson, W., “Removing organic color and by-products from groundwater with ozone and pressurized biologically-active filtration,” Ozone Sci. Eng., 23, 393-400(2001) 

  139. Nishijima, W., Kim, W. H., Shoto, E., and Okada, M., “The performance of an ozonation-biological activated carbon process under long term operation,” Water Sci. Technol., 38(6), 163-169(1998) 

  140. Wang, J. Z. and Summers, R. S., “Modeling of biofiltration of natural organic matter in drinking water treatment,” In Proceedings of ASCE Environmental Engineering Conference, Boulder(1994) 

  141. Carlson, K. H., Amy, G. L., Garside, J., and Blais, G., “Ozone induced biodegradation and removal of NOM and ozonation by-products in biological filters,” In Alternative Biological Filtration, Collins M. R. and Graham N. J. D.(eds.), John Wiley & Sons, New York(1996) 

  142. Carlson, K. H. and Amy, G., “The formation of filterremovable biodegradable organic matter during ozonation,” Ozone Sci. Eng., 19(2), 179-199(1997) 

  143. Carlson, K. H. and Amy, G., “Ozone and biofiltration optimization for multiple objectives,” J. Am. Water Works Assoc., 93(1), 88-98(2001) 

  144. Huck, P. M., Zhang, S., and Price, M. L., 'BOM removal during biological treatment: a first-order model,' J. Am. Water Works Assoc., 86(6), 61(1994) 

  145. Zhang, S. and Huck, P. M., “Biological water treatment: a kinetic modeling approach,” Water Res., 30(5), 1195(1996) 

  146. Merlet, N., Merlet, Y., Pr $\acute{e}$ vost, Y., Desjardins, R., and Bablon, G., “Removal of organic matter in BAC filters: the link between BDOC and chlorine demand,” In Proceedings of Am. Water Works Assoc., WQTC, Denver, Colorado(1991) 

  147. Pr $\acute{e}$ vost, J., Coallier, J., Mailly, R. D., and Duchesne, D., “Comparison of biodegradable organic carbon (BOC) techniques for process control,” J. Water SRT-Aqua, 4(3), 141-150(1992) 

  148. LeChevallier, M. W., Becker, W. C., Schorr, P., and Lee, R. G., “Evaluating the performance of biologically active rapid sand filters,” J. Am. Water Works Assoc., 84(4), 136(1992) 

  149. Pr $\acute{e}$ vost, M., Niquette, P., Maclean, R. G., Thibault, D., Lafrance, P., and Desjardins, R., “Removal of various biodegradable organic compounds by first and second stage filtration,” In Proceedings of 12th Ozone World Congress, Zurich, Switzerland, International Ozone Association(1991) 

  150. Hozalski, R. M. and Bouwer, E. J., “Deposition and retention of bacteria in backwashed filters,” J. Am. Water Works Assoc., 90(1), 71-85(1998) 

  151. Bouwer, E. J. and Crowe, P. B., “Biological processes in drinking water treatment,” J. Am. Water Works Assoc., 80(9), 82(1988) 

  152. Bablon, G. P., Ventresque, C., and Ben Aim, R., “Developing a sand-GAC filter to achieve high-rate biological filtration,” J. Am. Water Works Assoc., 80(12), 47(1988) 

  153. Chipps, M. J., Bauer, M. J., and Bayley, R. G., “Achieving enhanced filter backwashing with combined air scour and sub-fluidizing water at pilot and operational scale,” Filtration and Separation, 1, 55(1995) 

  154. Ahmad, R. and Amirtharajah, A., “Detachment of biological and non-biological particles from biological filters during backwashing,” In Proceedings of Am. Water Works Assoc., Annual Conference, Denver, Colorado(1995) 

  155. Ahmad, R. and Amirtharajah, A., “Detachment of particles during biofilter backwashing,” J. Am. Water Works Assoc., 90(12), 74-85(1998) 

  156. Urfer, D., Huck, P. M., Booth, S. D. J., and Coffey, B. M., “Biological filtration for BOM and particle removal: a critical review,” J. Am. Water Works Assoc., 89(12), 83-98(1997) 

  157. Miltner, R. J., Summers, R. S., and Wang, J. Z., “Biofiltration performance: part 2, effect of backwashing,” J. Am. Water Works Assoc., 87(12), 64-70(1995) 

  158. Krasner, S. W., Sclimenti, M. J., and Coffey, B. M., “Testing biologically active filters for removing aldehydes formed during ozonation,” J. Am. Water Works Assoc., 85(5), 62-71(1993) 

  159. Coffey, B. M., Krasner, S. W., Sclimenti, M. J., Hacker, P. A., and Gramith, J. T., “A comparison of biologically active filters for the removal of ozone byproducts, turbidity and particles,” In Proceedings of Am. Water Works Assoc., WQTC, Denver, Colorado(1995) 

  160. Moll, D. and Summers, R., “Assessment of drinking water filter microbial communities using taxonomic and metabolic profiles,” Water Sci. Technol., 39(7), 83-89(1999) 

  161. Koffskey, W. and Lykins, B., “Disinfection/disinfectant by-product optimisation with ozone, biological filtration and chloramines,” J. Water SRT-Aqua, 48(3), 92-105 (1999) 

  162. Vahala, R., Moramarco, V., Niemi, R. M., Rintala, J., and Laukkanen, R., “The effects of nutrients on natural organic matter(NOM) removal in biological activated carbon(BAC) filtration,” Acta Hydrochim Hydrobiol., 26(3), 196-199(1998) 

  163. Metcalf & Eddy Inc., Wastewater Engineering: Treatment, Disposal and Reuse, 3rd Edition, McGraw-Hill Inc., New York(1991) 

  164. Sathasivan, A., Ohgaki, S., Yamamoto, K., and Kamiko, N., “Role of inorganic phosphorus in controlling regrowth in water distribution system,” Water Sci. Technol., 35, 37-44(1997) 

  165. Lehtola, M. J., Miettinen, I. T., Vartiainen, T., Myllykangas, T., and Martikainen, P. J., “Microbially available organic carbon, phosphorus and microbial growth in ozonated drinking water,” Water Res., 35(7), 1635-1640(2001) 

  166. Lehtola, M. J., Miettinen, I. T., Vartiainen, T., and Martikainen, P. J., “Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes,” Water Res., 36(15), 3681-3690(2002) 

  167. Ahmad, R., Amirtharajah, A., Al-Shawwa, A., and Huck, P. M., “Effects of backwashing on biological filters,” J. Am. Water Works Assoc., 90(12), 62-73(1998) 

  168. Simpson, D. R., “Biofilm processes in biologically active carbon water purification,” Water Res., 42, 2839∼2848 (2008) 

  169. La Motta, E., “Kinetics of growth and substrate uptake in a biological film system,” Appl. Environ. Microbiol., 31, 286-293(1976) 

  170. Keinanen, M., Martikainen, P., and Kontro, M., “Microbial community structure and biomass in developing drinking water biofilms,” Can. J. Microbiol., 50, 183-191(2004) 

  171. Camper, A., LeChevallier, M., Broadaway, S., and Mc-Feters, G., “Bacteria associated with granular activated carbon particles in drinking water,” Appl. Environ. Microbiol., 52(3), 434-438(1986) 

  172. Nishijima, W., Tojo, M., Okada, M., and Murakami, A., “Biodegradation of organic substances by biological activated carbon-stimulation of bacterial activity on granular activated carbon,” Water Sci. Technol., 26(12), 251-257(1992) 

  173. Van der Kooij, D., Visser, A., and Hijnen, W., “Determining the concentration of easily assimilable organic carbon in drinking water,” J. Am. Water Works Assoc., 76(10), 540-545(1982) 

  174. Lehtola, M. J., Miettinen, I. T., and Martikainen, P. J., “Biofilm formation in drinking water affected by low concentrations of phosphorus,” Can. J. Microbiol., 48, 494-499(2002) 

  175. Brown, J., Anderson, R., Min, J., Boulos, L., Prasifka, D., and Judy, G., “Fixed-bed biological treatment of perchlorate-contaminated drinking water,” J. Am. Water Works Assoc., 97(9), 70-81(2005) 

  176. Kim, K. and Logan, B., “Fixed-bed bioreactor treating perchlorate-contaminated waters,” Environ. Eng. Sci., 17(5), 257-265(2000) 

  177. Rittmann, B. E. and McCarty, P. L., “Model of steadystate biofilm kinetics,” Biotechnol. Bioeng., 22, 2343-2357(1980) 

  178. Dugan, N. R., Evaluation and modeling of the influences of ozonation and pH on the biological utilization of NOM, Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH., PhD thesis(1998) 

  179. Liang, C. H. and Chiang, P. C., “Mathematical model of the non-steady-state adsorption and biodegradation capacities of BAC filters,” J. Hazard. Mater., 139, 316-322(2007) 

  180. Xia, Q., Chen, W., and Zheng, X., “Modeling of NOMremoval in drinking water biofilters,” In Proceedings of IWA World Water Congress & Exhibition 2008, Vienna, Austria(2008) 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로