$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물 유전자의 과발현 및 발현 억제를 위한 유용 벡터의 제조 및 확인
Construction and Verification of Useful Vectors for Ectopic Expression and Suppression of Plant Genes. 원문보기

생명과학회지 = Journal of life science, v.19 no.6 = no.110, 2009년, pp.809 - 817  

이영미 (부산대학교 분자생물학과) ,  석혜연 (부산대학교 분자생물학과) ,  박희연 (부산대학교 분자생물학과) ,  박지임 (부산대학교 분자생물학과) ,  한지성 (부산대학교 분자생물학과) ,  방태식 (부산대학교 분자생물학과) ,  문용환 (부산대학교 분자생물학과)

초록
AI-Helper 아이콘AI-Helper

식물에서 유전자의 기능을 연구하는데 있어서 유전자가 과발현 되거나 발현이 억제되는 형질전환체는 해당 유전자의 기능과 관련되어 매우 유용한 정보를 제공한다. 본 연구에서는 modified CaMV 355, UBQ3, UBQ10 프로모터를 pPZP211 벡터에 각각 클로닝 하여 Agrobacterium을 매개로 한 과발현형질전환 식물체 제작에 유용하게 이용할 수 있는 pFGL571, pFGL846, pFGL847을 제조하였다. 이 벡터들은 크기가 작고, 박테리아 내에 high copy로 존재하며, 다중 클로닝 부위에 다양한 제한효소 부위를 가지고 있고, 전체 서열이 알려져 있는 등의 장점을 가지고 있다. GUS 또는 sGFP 리포터 유전자를 포함하는 형질전환 식물체를 제조하여 modified CaMV 35S, UBQ3, UBQ10 프로모터의 활성을 분석한 결과, 세 프로모터 모두 발아 후 대부분의 발달단계와 성숙한 식물체의 꽃 기관에서 높은 활성을 보였다. 한편, 식물에서 유전자 발현 억제에 이용할 수 있는 RNAi 기본 벡터인 pFGL727을 제조하였고, pFGL727을 이용한 벼 RNAi 형질전환체의 분석을 통해 이벡터가 유전자의 발현 억제에 유용하게 이용될 수 있음을 확인하였다. 연구 결과를 종합해 보면, 본 연구에서 제조한 벡터들은 식물에서 유전자 과발현과 발현 억제에 유용하게 이용될수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

The phenotypes associated with a gene function are often the best clue to its role in the plant. Transgenic plants ectopically expressing or suppressing a gene can provide useful information related to the gene function. In this study, we constructed three vectors - pFGL571, pFGL846 and pFGL847 - fo...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 1. Schematic maps of ectopic expression and RNAi vectors generated in this study. (A) Subdomains of intact and modified CaMV 35S promoters.
  • 제조 또는 확보하는 것은 필수적이다[18]. 연구에서는 식물, 특히 쌍자엽식물에서 유전자의 과발현에 사용할 수 있는 세 종류의 벡터와 대부분의 식물에서 유전자의 발현억제에 사용할 수 있는 RNAi 기본 벡터를 제조하고 그 유용성을 확인하였다. 특히 과발현용 벡터의 제조에 사용된 pPZP211 은 bi­ nary 벡터들 가운데 크기가 작고 박테리아 내에서 높은 copy 수로 존재하여 본 연구에서 제조된 벡터들은 박테리아 내에서의 조작이 매우 용이하다[13].
  • 본 연구에서는, pPZP211 벡터를 골격으로 하고 CaMV 35S 프로모터와 애기장대의 UBQ3, UBQ10 프로모터를 이용하여 쌍자엽 식물에서의 유전자 과발현을 위한 벡터를 제조하여 확인하였고, 아울러 유전자 발현 억제에 사용될 수 있는 RNAi 벡터의 골격을 제조하여 그 효과를 조사하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. An, G. 1986. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco tissue. Plant Physiol. 81, 86-91 

  2. Benfey, P. N., L. Ren, and N. H. Chua. 1989. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 8, 2195-2202 

  3. Benfey, P. N., L. Ren, and N. H. Chua. 1990a. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 9, 1677-1684 

  4. Benfey, P. N., L. Ren, and N. H. Chua. 1990b. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 9, 1685-1696 

  5. Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12, 8711-8721 

  6. Callis, J., T. Carpenter, C. W. Sun, and R. D. Vierstra. 1995. Structure and Evolution of Genes Encoding Polyubiquitin and Ubiquitin-Like Proteins in Arabidqpsis thaliana Ecotype Columbia. Genetics 159, 921-939 

  7. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805 

  8. Christensen, A. H., R. A. Sharrok, and P. H. Quail. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675-689 

  9. Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 

  10. Fang, R. X., F. Nagy, S. Sivasubramaniam, and N. H. Chua. 1989. Multiple cis Regulatory Elements for Maximal Expression of the Cauliflower Mosaic Virus 35S Promoter in Transgenic Plants. Plant Cell 1, 141-150 

  11. Gallie, D. R., D. E. Sleat, J. W. Watts, P. C. Turner, and T. M. A. Wilson. 1987. A comparison of eukaryotic viral 5'-reader sequences as enhancers of mRNA expression in vivo. Nucl. Acids Res. 15, 8693-8711 

  12. Gao, P., Z. Xin, and Z. L. Zheng. 2008. The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis. PLoS ONE 3, e1387 

  13. Hajdukiewicz, P., Z. Svab, and P. Maliga. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989-994 

  14. Harholt, J., J. K. Jensen, S. O. Sørensen, C. Orfila, M. Pauly, and H. V. Scheller. 2006. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in arabidopsis. Plant Physiol. 140, 49-58 

  15. Herrera-Estrella, L., M. D. Block, E. Messens, J. P. Hernalsteens, M. V. Montagu, and J. Schell. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987-995 

  16. Hiei, Y., T. Komari, and T. Kubo. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35, 205-218 

  17. Hofgen, R. and L. Willmitzer. 1988. Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 18, 9877 

  18. Holtorf, H., M. C. Guitton, and R. Reski. 2002. Plant functional genomics. Naturwissenschaften 89, 235-249 

  19. Holtorf, S., K. Apel, and H. Bohlmann. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29, 637-646 

  20. Kusaba, M. 2004. RNA interference in crop plants. Curr. Opin. Biotechnol. 15, 139-143 

  21. Kusaba, M., K. Miyahara, S. Iida, H. Fukuoka, T. Takano, H. Sassa, M. Nishimura, and T. Nishio. 2003. Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15, 

  22. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497 

  23. Park, H. Y., I. S. Kang, J. S. Han, C. H. Lee, G. An, and Y. H. Moon. 2009. OsDEG10 encoding a small RNA-binding protein is involved in abiotic stress signaling. Biochem. Biophys. Res. Commun. 380, 597-602 

  24. Pereira, A. 2000. A transgenic perspective on plant functional genomics. Transgenic Res. 9, 245-260 

  25. Sanders, P. R., J. A. Winter, A. R. Bamason, S. G. Rogers, and R. T. Fraley. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucl. Acids Res. 15, 1543-1558 

  26. Shabalina, S. A. and E. V. Koonin. 2008. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578-587 

  27. Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoutjesdijk, A. G. Green, and P. M. Waterhouse. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319-320 

  28. Stoutjesdijk, P. A., S. P. Singh, Q. Liu, C. J. Hurlstone, P. A. Waterhouse, and A. G. Green. 2002. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol. 129, 1723-1731 

  29. Sun, C. W. and J. Callis. 1997. Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J. 11, 1017-1027 

  30. Wally, O., J. Jayaraj, and Z. K. Punja. 2008. Comparative expression of beta-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues. Plant Cell Rep. 27, 279-287 

  31. Wang, J. and J. H. Oard. 2003. Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep. 22, 129-134 

  32. Weltmeier, F., F. Rahmani, A. Ehlert, K. Dietrich, K. Schutze, X. Wang, C. Chaban, J. Hanson, M. Teige, K. Harter, J. Vicente-Carbajosa, S. Smeekens, and W. Droge-Laser. 2009. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol. Biol. 69, 107-119 

  33. Wesley, S. V., C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, and P. A. Stoutjesdijk. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581-590 

  34. Zhang, H., C. Ransom, P. Ludwig, and S. van Nocker. 2003. Genetic Analysis of Early Flowering Mutants in Arabidopsis Defines a Class of Pleiotropic Developmental Regulator Required for Expression of the Flowering-Time Switch Flowering Locus C. Genetics 164, 347-358 

  35. Zheng, X., W. Deng, K. Luo, H. Duan, Y. Chen, R. McAvoy, S. Song, Y. Pei, and Y. Li. 2007. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep. 26, 1195-1203 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로