$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

준분포형 모형인 SWAT 모형은 소유역내 수문학적 반응단위 별로 유출, 유사 등의 발생을 평가하는데 이때 Hydrological Response Unit (HRU)의 지형정보가 활용된다. 현재 SWAT 모형의 인터페이스 구조는, 각 소유역의 평균 지형인자 값이 각 소유역내의 모든 HRU의 지형정보로 사용된다. 그러므로 각 소유역내의 HRU에 있는 지형인자를 정확하게 추출하기 위해서는 수계를 자세하게 나누어야 하며, 이를 위해서 더욱 자세한 소유역 수계 인터페이스가 필요하다. 현재 SWAT 모형 인터페이스에서는 수계를 나눌 때 임계값의 최소값은 최대 flow accumulation 값의 0.1 %가 사용된다. 따라서 HRU의 지형인자를 추출하기 위해 아주 자세한 정도로 소유역의 수계를 나눈다는 것은 불가능하다. 본 연구에서는 사용자가 원하는 임계값과 농경지 경계를 근거하여 소유역 경계를 추가로 수계를 나눌 수 있는 Dual Watershed Delineation Module (DWDM) 을 개발하였다. 기존 SWAT의 수계추출 모듈로 유량을 모의한 결과 $27,219\;m^3$/month 가 산정되었고, DWDM 을 적용한 결과 $26,172\;m^3$/month 로 약 3.8 %의 미미한 차이가 생겼다. 하지만 유사의 경우 DWDM을 적용하기 전에는 0.779 ton/month, 적용 후에는 2.688 ton/month 로 약 245 %의 차이를 보였다. 즉 농경지를 추가적으로 수계를 나눌 때 유사의 가장 민감한 요소인 경사장을 실제지형에 맞게 고려함에 따라 좀 더 정확한 유사 산정을 할 수 있었다. 농경지에서의 정확한 수문 및 유사 평가 시 본 연구에서 개발한 모듈이 적용 되어야 한다고 사료된다.

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Future studies are needed. First, procedures of the DWDM should be modified for the full automation module. Secondly, the DWDM should be calibrated and validated with the measured data and conduct further tests for other catchments to minimize SWAT errors in performing realistic assessments.
  • Rather than simulating each of the subbasins in detail, the subbasins are lumped together. In this study, the DWDM was developed as both the solution to the errors of the SWAT model and for an increase in accuracy in a simulation. The factors of the simulated streamflow and the sediment were compared with the current watershed delineation module and DWDM according to the additional burning–and non-burning–of an agricultural field.
  • In this study, the DWDM was developed to complement limitations in the SWAT interface when delineating subwatersheds and streams networks. With the current automatic watershed delineation module in the SWAT model, it is not possible to reflect agricultural field boundaries in delineating water flow paths because watershed delineation was managed based on DEM, which is not that detail for agricultural field boundaries.
  • In this study, to overcome the aforementioned limitations of the SWAT model which form the stream nothing but using DEM, after making a shape file for real agricultural boundary through field survey or high resolution satellite image, it is inputted into “burn_in using agricultural field boundary” dialog box to analyze agricultural canals for additionally burning stream to estimate sediment and nutrient pollution from each parcel of an agricultural field accurately.
  • , 1998) is a continuous-time semi-distributed simulation watershed model. It was developed to predict the effects of alternative management decisions on water, sediment, and chemical yields with reasonable accuracy. One of its attractive features is that there is a long period modeling experience behind this model.
  • The DWDM was developed in this study in order to predict hydrological and water quality at agricultural field level more accurately than before with the SWAT model. The processes for the development of the DWDM were as follows (Fig.
  • The SWAT input data, such as land uses, soil, DEM, and long-term weather data (Table 1) were prepared for the study watershed to evaluate the effects on streamflow and sediment of using the DWDM in SWAT runs. Digital soil map (1:25,000) from the Korea Rural Resource Development Institute was used (Fig.
  • In this study, to overcome the aforementioned limitations of the SWAT model which form the stream nothing but using DEM, after making a shape file for real agricultural boundary through field survey or high resolution satellite image, it is inputted into “burn_in using agricultural field boundary” dialog box to analyze agricultural canals for additionally burning stream to estimate sediment and nutrient pollution from each parcel of an agricultural field accurately. Therefore, the additional watershed delineation of agricultural fields was conducted using the DWDM developed in this study to simulate streamflow and sediment, and the result values of them were compared with or without the DWDM.
  • Finally, after developing the module to create streamlink considering both streamlink made by automatic watershed delineation module in the current SWAT and that made by agricultural field boundary using various ArcView Avenue programmings, the DWDM for watershed delineation extraction was developed for accurate estimation in each parcel of agricultural fields. Thus, to simulate agricultural field accurately as real situation, agricultural boundary made by the SWAT user according to on-site agricultural field through field survey was delineated to conduct watershed delineation of each part of an agricultural field independently using the DWDM developed in this study.

대상 데이터

  • 5(c)) with cell sizes of 1 m were prepared using the 1:5,000 digital map obtained from the Korea National Geographic Information Institute. Long-term daily historic weather data (from 1993 through 2007) collected from the weather station in Hongcheon-gun, the nearest one, Gangwon province were used in the evaluation of the DWDM.
  • Small rural, hilly watershed (Fig. 4), situated in the southern part of Hongcheon-gun, Gangwon-do in South Korea, was selected to demonstrate necessity of development of the SWAT DWDM module.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Arnold, J. G., N. Fohrer, 2005. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes 19(3): 563-572. 

  2. Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large area hydrologic modeling and assessment: part I: model development. Journal of American Water Resources Association 34(1): 73-89. 

  3. Bicknell, B. R., J. C. Imhoff, J. L. Kittle, and A. S. Donigian, 2001. Hydrological Simulation Program - .Fortran, Version 12, User's Manual. AQUATERRA Consultants, Mountain View, California, USA. 

  4. Binger, R. L., and F. D. Theurer, 2003. AnnAGNPS technical processes: documentation version 3. Available at http://www.ars.usda.gov/Research/. Accessed Mar.10. 2009. 

  5. Cai, Q. G., H. Wang, D. Curtin, and Y. Zhu, 2005. Evaluation of the EUROSEM model with single event data on steeplands in the Three Gorges Reservoir Areas, China. CATENA 59(1): 19-33. 

  6. Gobin, A., and G. Govers, 2003. Pan - .European erosion risk assessment. 3rd Annual Report -. 5th Framework Programme. Ispra, Italy. 

  7. Hartcher, M. G, and D. A Post, 2005. Reducing uncertainty in sediment improved representation of land cover: Application to two sub-catchments of the Mae Chaem, Thailand. In: Zerger A, Argent R. (eds). International Congress on Modelling and Simulation. Modeling Society of Australia and New Zealand 1147-1153. 

  8. Heo, S., N. Kim, Y. Park, J. Kim, S. Kim, J. Ahn, K. Kim, and K. J. Lim, 2008. Evaluation of effects on SWAT simulated hydrology and sediment behaviors of SWAT watershed delineation using SWAT ArcView GIS extension patch. Journal of Korean Society on Water quality 24(2): 147-155 (in Korean). 

  9. Hwang, J. Y., K. Yeon, I. Kim, K. Kim, J. Choi, J. Jeon, and K. J. Lim, 2009. Analysis of effect on runoff and water quality of LID using infiltration facilities. Journal of the Korean Society of Agricultural Engineers 51(6): 105-114 (in Korean). 

  10. Jang, W., D. Yoo, I. Chung, N. Kim, M. Jun, Y. Park, J. Kim, and K. J. Lim, 2009. Development of SWAT SD-HRU pre-processor module for accurate estimation of slope length of each HRU considering spatial topographic characteristics in SWAT. Journal of Korean Society on Water quality 25(3): 351-362 (in Korean). 

  11. Jha, M., J. G. Arnold, P. W. Gassman, F. Giorgi, and R. R. Gu, 2006. Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. Journal of the American Water Resources Association 42(4): 997-1016. 

  12. Jha, M., P. W. Gassman, S. Secchi, G. Roy, and J. G. Arnold, 2002. Impact of watershed subdivision level on flows, sediment loads, and nutrient lossless predicted by SWAT. Working Paper 02-WP 315:22-23. 

  13. Jung, Y., N. Kim, and H. Kim, 2007. NOM characteristics by the turbidity in-flow in lake Soyang. Proceedings of the 2007 KSWW Annual Conference 455-461. 

  14. Kim, J., Y. Park, D. Yoo, N. Kim, B. A. Engel, S. Kim, K. Kim, and K. J. Lim, 2009. Development of a SWAT patch for better estimation of sediment yield in steep sloping watersheds. Journal of the American Water Resources Association 45(4): 963-972. 

  15. Kim, J., Y. Park, N. Kim, S. Heo, K. Kim, J. Choi, and K. J. Lim, 2007. Development of field slope length computation module for accurate soil erosion and sediment modeling using the SWAT. Proceedings of the 2007 KSWW Annual Conference 91-97 (in Korean). 

  16. Kim, J., Y. Park, N. Kim, I. Chung, W. Jang, J. Park, J. Moon, and K. J. Lim, 2008. Development and evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) fix module from low resolution DEM. Journal of Korean Society on Water Quality 24(4): 488-498 (in Korean). 

  17. Luo, Y., X. Zhang, X. Liu, D. Ficklin, and M. Zhang, 2008. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Environmental Polluton 156(3): 1171-1181. 

  18. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams, 2002. Soil and Water Assessment Tool: User Manual, Version 2000. Grassland, Soil and Water Research Laboratory,Temple, TX. 

  19. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams, 2004. Soil and Water Assessment Tool: Input / Output file documentation, Version 2005. Grassland, Soil and Water Research Laboratory, Temple, TX. 

  20. Pandey, A., V. M. Chowdary, B. C. Mal, and M. Billib, 2008. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology 348(3-4):305-319. 

  21. Park, Y., J. Kim, J. Park, J. Jeon, J. Choi, T. Kim, J. Ahn, K. Kim, and K. J. Lim, 2007. Evaluation of SWAT applicability to simulation of sediment behaviors at the Imha-dam watershed. Journal of Korean Society on Water Quality 23(4): 467-473 (in Korean). 

  22. Park, Y., J. Kim, S. Heo, N. Kim, J. Ahn, J. Park, K. Kim, and K. J. Lim, 2008. Comparison of soil loss estimation using SWAT and SATEEC. Journal of the Korean Society of Agricultural Engineers 50(1): 3-12 (in Korean). 

  23. Srinivasan, R., T. S. Ramanarayanan, J. G. Arnold, and S. T. Bednarz, 1998. Large area hydrologic modeling and assessment: part II. Model Application. J. American Water Resour. Assoc. 34(1): 73-89. 

  24. Williams, J. R., 1995. Chapter 25: The EPIC model. 909-1000. In V. P. Singh(ed.) Computer models of watershed hydrology. Water Resources Publications. 

  25. Wischmeier, W. H., and D. D. Smith, 1978. Predicting rainfall erosion losses a guide to conservation planning. The USDA Agricultural Handbook No. 537. 

  26. Yoo, D., J. Ahn, J. Yoon, S. Heo, Y. Park, J. Kim, K. J. Lim, and K. Kim, 2008. Analysis of soil erosion and sediment yields at the Doam-dam watershed considering soil properties from the soil reconditioned agricultural fields using SATEEC system. Journal of Korean Society on Water Quality 23(4): 518-526 (in Korean). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로