$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

Peroxone 공정은 정수처리 공정에서 기존의 염소와 오존 공정들의 여러 가지 한계점들을 극복할 수 있는 공정이다. 과산화수소와 오존에 의해 생성되는 OH 라디칼은 다양한 유기성 오염물질들에 대해 빠른 산화분해 및 높은 제거효율을 나타낸다. Peroxone 공정을 운영하는데 있어 주요 과제는 OH 라디칼 생성을 저해시키는 또는 생성된 OH 라디칼을 소모시키는 scavenger들과 공존할 때 peroxone 공정의 효율을 높일 수 있는 방안을 강구하는 것이다. Bromate와 같은 무기성 산화 부산물의 생성을 최소화할 수 있는 방안과 peroxone 공정 처리 후 염소 소독시 생성되는 염소 소독부산물들의 생성을 보다 저감할 수 있는 방안에 대해서도 많은 연구가 필요하다. 또한, 수중에 잔류하는 과산화수소에 대한 문제이다. 잔류 과산화수소를 on-line으로 측정할 수 있는 정밀한 측정장비의 개발 및 보급이 우선되어야 peroxone 공정의 운영에 있어서 안전성이 확보될 수 있다. 이러한 과제들이 해결이 된다면 peroxone 공정은 보다 다양한 목적으로 정수처리에 효율적으로 적용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

The peroxone process overcomes many of the limitations associated with conventional and advanced water treatment systems using chlorine disinfection and ozone oxidation processes. Ozone and hydrogen peroxide generate highly reactive hydroxyl free radical which oxidize various organic compounds and h...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 2000년 이후에 발표된 연구논문을 중심으로 peroxone 공정을 정수처리에 적용하기 위한 연구 내용들을 요약하여 Table 3에 나타내었다. Table 3에서 볼 수 있듯이 의약물질류, 내분비계 장애물질류, NDMA, 과불화 화합물류, 농약류 등의 난분해성 미량오염물질들을 제거하기 위한 목적으로 적용되었다. 이러한 물질들은 기존의 산화공정에 내성을 가지고 있기 때문에 높은 제거율을 기대할 수 없다.
  • 본 연구에서는 이미 연구 발표된 많은 자료들을 이용하여 peroxone 공정의 원리, 특성, 정수처리에서의 적용성 및 ozone 공정과 peroxone 공정과의 처리효율 비교를 통하여 peroxone 공정의 최근 연구동향 등을 중심으로 총체적으로 기술하였다.
  • 2. Peroxone 공정의 적용 및 최적 주입비 선정

    정수처리에서 peroxone 공정은 수중의 이취물질과 합성 유기화합물과 같은 유기성 오염물질의 산화 제거를 목적으로 적용되었다. Geosmin과 2-MIB 같은 이취물질들은 오존 산화에 대해 내성을 가지지만 peroxone 공정에서는 효과적으로 제거가 가능한 것으로 보고되고 있으며,21,37∼39) 1,1-dichloropropene, TCE, PCE, 1-chloropentane 및 1,2-dichloroethane과 같은 염소계 유기화합물들의 산화제거에도 오존공정 보다 peroxone 공정이 효과적인 것으로 보고되 었다.

본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
염소와 오존은 어떤 목적으로 사용되고있나? 정수처리 공정에서 염소와 오존 같은 산화제는 바이러스나 원생동물의 불활성화 및 수중의 난분해성 물질의 산화목적으로 사용되어져 오고 있다.1,2) 산업의 발전과 생활수준의 향상으로 우리가 제조하여 사용하는 합성 유기물질들은 엄청난 증가 추세를 보이고 있으며3) 이러한 합성 유기물질들은 대부분이 난분해성으로 환경에 심각한 위해성을 나타낸다.
우리가 제조하여 사용하는 합성 유기물질들이 엄청난 증가 추세를 보이고 있는 이유는? 정수처리 공정에서 염소와 오존 같은 산화제는 바이러스나 원생동물의 불활성화 및 수중의 난분해성 물질의 산화목적으로 사용되어져 오고 있다.1,2) 산업의 발전과 생활수준의 향상으로 우리가 제조하여 사용하는 합성 유기물질들은 엄청난 증가 추세를 보이고 있으며3) 이러한 합성 유기물질들은 대부분이 난분해성으로 환경에 심각한 위해성을 나타낸다. 이런 물질들은 하·폐수 처리장 유출수 및 침출수 등에서 완전히 제거되지 못하고 상수원으로 유입되어 우리들의 건강을 위협한다.
합성 유기물질들이 환경에 심각한 위해성이 되는 이유는? 1,2) 산업의 발전과 생활수준의 향상으로 우리가 제조하여 사용하는 합성 유기물질들은 엄청난 증가 추세를 보이고 있으며3) 이러한 합성 유기물질들은 대부분이 난분해성으로 환경에 심각한 위해성을 나타낸다. 이런 물질들은 하·폐수 처리장 유출수 및 침출수 등에서 완전히 제거되지 못하고 상수원으로 유입되어 우리들의 건강을 위협한다.4∼10) 난분해성 오염물질들은 농약류, 합성 세제, 색도 유발물질, 의약물질들 및 내분비계 장애물질들 등으로11∼14) 염소나 오존을 이용해서 이러한 물질들을 효과적으로 산화 제거하기에는 한계가 있다. 산화효율 증진을 위해 과다한 염소의 투입은 트리할로메탄과 같은 소독부산물을 과다하게 생성시키며 또한, 과다한 오존투입의 경우도 비경제적이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (91)

  1. Dodd, M C. and Huang, C. H., "Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechani는 and pathways," Environ. Sci. Technol., 38, 5607-5615(2004). 

  2. 손희종, 최영익, 배상대, 정철우, "오존과 활성탄 공정에서의 1,4-dioxane 제거 특성," 대한환경공학회지, 28(12), 1280-1286(2006). 

  3. Veriansyah, B. and Kim, J. D., "Supercritical water oxidation for the destruction of toxic organic wastewaters: a review," J. Environ. Sci., 19, 513-522(2007). 

  4. des Mes, T, Z, D., Kujawa-Roeleveld, K., Zeeman, G., and Lettinga, G., "Anaerobic biodegradation of estrogens-hard to digest," Water Sci. Technol., 57(8), 1177-1182. 

  5. Lin, A. Y. C., Yu, T. H., and Lin, C. F., "Pharmaceutical contamination in residual, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan," Chemosphere, 74, 131-141(2008). 

  6. Balest, L., Mascolo, G., Di laconi, C., and Lopez, A., "Removal of endocrine disruptor compounds from municipal wastewater by an innovative biological technology," Water Sci. Technol., 58(4), 953-956. 

  7. Bandala, E. R., Pelaez, M. A., Garcia-Lopez, J., Salgado, M. J., and Moeller, G., "Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes," Chem. Eng. Proc., 47, 169-176(2008). 

  8. Schrank, S. G., Jose, H. J., Moreira, R. F. P. M., and Schroder, H. Fr., "Elucidation of the behavior of tannery wastewater under advanced oxidation conditions," Chemosphere, 56, 411-423 (2004). 

  9. Petrovic, M., Gonzalez, S., and Barcelo, D., "Analysis and removal of emerging contaminants in wastewater and drinking water," Trends Anal. Chem., 22(10), 685-696(2003). 

  10. Matosic, M., Terzic, S., Jakopovic, H. K., Mijatovic, I., and Ahel, M., "Treatment of a landfill leachate containing compounds of pharmaceutical origin," Water Sci. Technol., 58(3), 597-602(2008). 

  11. Zapata, A., Velegraki, T., Sanchez-Perez, J. A., Mantzavinos, D., Maldonado, M. I., and Malato, S., "Soalr photo-Fenton treatment of pesticides in water: effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability," Appl. Catal. B: Environ., 88, 448-454(2009). 

  12. Krause, H., Schweiger, B., Schuhmacher, J., Scholl, S., and Steinfeld, "Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid and iopromide by corona discharge over water," Chemosphere, 75, 163-168(2009). 

  13. Klavarioti, M., Mantzavinos, D., and Kassinos, D., "Removal of residual pharmaceuticals from aqueous system by advanced oxidation processes," Environ. Int., 35, 402-417(2009). 

  14. Esplugas, S., Bila, D. M., Krause, L. G. T., and Dezotti, M., "Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents," J. Hazard. Mater., 149, 631-642(2007). 

  15. 손희종, 최영익, 배상대, 정철우, "오존과 활성탄 공정에서 1,4-dioxane 제거 특성," 대한환경공학회지, 28(12), 1280-1286(2006). 

  16. Staehelin, J. and Hoigne, J., "Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide," Environ. Sci. Technol., 16, 676-681(1982). 

  17. Nakayama, S., Esaki, K., Namba, K., Taniguchi, N., and Tabata, N., "Improved ozonation in aqueous systems," Ozone Sci. Eng., 1, 119(1979). 

  18. Glaze, W. H., Kang, J. W., and Chapin, D. H., "The chemistry of water treatment processes involving ozone. hydrogen peroxide and ultraviolet radiation," Ozone Sci. Eng., 9(4), 335-352(1987). 

  19. Brunet, R., Bourbigot, M. M., and Dore, M., "Oxidation of organic compounds through the combination ozone-hydrogen peroxide," Ozone Sci. Eng., 6, 163(1984). 

  20. Duguet, J. P., Brodard, E., Dussert, B., and Mallevialle, J., "Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide," Ozone Sci. Eng., 7, 241-258(1985). 

  21. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L., and Aieta, E. M., "Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms," J. AWWA, 82(4), 181-191(1990). 

  22. Roche, P., Volk, C., Carbonnier, F., and Paillard, H., "Water oxidation by ozone/hydrogen peroxide using the 'Ozotest' or 'Peroxotest' methods," Ozone Sci. Eng., 16(2) 135-155(1994). 

  23. Glaze, W. H. and Kang, J. W., "Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies," J. AWWA, 80(5), 57-63(1988). 

  24. Aieta, E. M., Reagan, K. M., Lang, J. S., McReynolds, L., Kang, J. W., and Glaze, W. H., "Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: pilot- scale evaluations," J. AWWA, 80(5), 64-72(1988). 

  25. Marhaba, T. F. and Bengraine, K., "Review of strategies for minimizing bromate formation resulting from drinking water ozonation," Clean Technol. Environ. Policy, 5, 101-112(2003). 

  26. Sein, M. M., Golloch, A., Schmidt, T. C., and von Sonntag, C., "No marked kinetic isotope effect in the peroxone $(H_{2}O_{2}/D_{2}O_{2}+O_{3})$ reaction: mechanistic consequences," Chem. Phys., 8, 2065-2067(2007). 

  27. Wojnarovits, L. and Takacs, E., "Irradiation treatment of azo dye containing wastewater: an overview," Radiat. Phys. Chem., 77, 225-244(2008). 

  28. Glaze, W. H. and Kang, J. W., "Advanced oxidation processes: description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor," Ind. Eng. Chem. Res., 28, 1573-1580(1989). 

  29. von Sonntag, C., "Advanced oxidation processes: mechanistic aspects," Water Sci. Technol., 58(5), 1015-1021(2008). 

  30. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution," J. Phys. Ref. Data, 17(2), 513-851(1988). 

  31. Acero, J. L. and von Gunten, U., "Characterization of oxidation processes: ozonation and the AOP $O_{3}$ / $H_{2}O_{2}$ ," J. AWWA, 93(10), 90-100(2001). 

  32. Elovitz, M. and von Gunten, U., "Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept," Ozone Sci. Eng., 21, 239-260(1999). 

  33. Westerhoff, P., Song, R., Amy, G., and Minear, R., "Application of ozone decomposition models," Ozone Sci. Eng., 19(1), 55-73(1997). 

  34. Elovitz, M., von Gunten, U., and Kaiser, H., "Hydroxyl radical/ ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity and DOM properties," Ozone Sci. Eng., 22, 123-150(2000). 

  35. US EPA, Alternative Disinfectants and Oxidants, 1999. 

  36. Forni, L., Bahnemann, D., and Hart, E. J., "Mechanism of the hydroxide ion initiated decomposition of ozone in aqueous solution," J. Phys. Chem., 86, 255-259(1982). 

  37. Ferguson, D. W., Gramith, J. T., and McGuire, M. J., "Applying ozone for organics control and disinfection: a utility perspective," J. AWWA, 83(5), 32-39(1991). 

  38. Huck, P. M., Anderson, W. B., Lang, C. L., Anderson, W. A., Fraser, J. C., Jasim, S. Y., Andrew, S. A., and Pereira, G., "Ozone vs. peroxone for geosmin and 2-methylisoborneol control: laboratory, pilot and modeling studies," Proceedings of AWWA Annual Conference, Anaheim, CA, (1995). 

  39. 이화자, 손희종, 노재순, 이상원, 지기원, 유평종, 강임석, "오존과 과산화수소를 이용한 geosmin과 2-MIB 산화: 동력학적 평가," 대한환경공학회지, 29(7), 826-832(2007). 

  40. Masten, S. J. and Hoigne, J., "Comparison of ozone and hydroxyl radical-induced oxidation of chlorinated hydrocarbons in water," Ozone Sci. Eng., 14(3), 197-214(1992). 

  41. Balcioglu, I. A. and Otker, M., "Treatment of pharmaceutical wastewater containing antibiotics by $O_{3}$ and $O_{3}/H_{2}O_{2}$ processes," Chemosphere, 50, 85-95(2003). 

  42. Arslan-Alaton, I. and Dogruel, S., "Pre-treatment of penicillin formulatopn effluent by advanced oxidation processes," J. Hazard. Mater., 112, 105-113(2004). 

  43. 이화자, 손희종, 노재순, 이상원, 지기원, 유평종, 강임석, "오존과 과산화수소를 이용한 이취미 물질 산화 제거," 대한환경공학회지, 28(12), 1323-1330(2006). 

  44. Suh, J. H. and Mohseni, M., "A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide," Water Res., 38, 2596-2604(2004). 

  45. Wolfe, R. L., Stewart, M. H., Liang, S., and McGuire, M. J., "Disinfection of model indicator organisms in a drinking water pilot plant by using peroxone," Appl. Environ. Microbiol., 55(9), 2230-2241(1989). 

  46. Wolfe, R. L., Stewart, M. H., Scott, K. N., and McGuire, M. J., "Inactivation of Giardia muris and indicator organisms seeded in surface water supplies by peroxone and ozone," Environ. Sci. Technol., 23, 744-745(1989). 

  47. Scott, K. N., Wolfe, R. L., Stewart, M. H., "Pilot-plant-scale ozone and peroxone disinfection of Giardia muris seeded into surface water supplies," Ozone Sci. Eng., 14(1), 71-90(1992). 

  48. Legrini, O., Oliveros, E., and Braun, A. M., "Photochemical processes for water-treatment," Chem. Rev., 93(2), 671-698(1993). 

  49. Peyton, G. R. and Glaze, W. H., "Mechanism of photocatalytic ozonation," In Photochemistry of Environmental Aquatic Systems, ACS Symposium Series 327, Zika, R. G. and Cooper, W. J.,(Eds.), American Chemical Society, Washington DC, pp. 76-88, (1986). 

  50. Acar, E. and Ozbelge, T., "Oxidation of Acid Red-151 aqueous solutions by the peroxone process and its kinetic evaluation," Ozone Sci. Eng., 28, 155-164(2006). 

  51. Duguet, J. P., Anselme, C., Mazounie, P., and Mallevialle, J., "Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a groung water," Ozone Sci. Eng., 12(3), 281-294(1990). 

  52. 손희종, 유수전, 황영도, 노재순, 유평종, "산화공정에서의 diclofenac, ibuprofen 및 naproxen의 제거특성 평가," 대한환경공학회지, 31(10), 831-838(2009). 

  53. Glaze, W. H., "Reaction products of ozone: a review," Environ. Health Perspec., 69, 151-157(1986). 

  54. Carlson, K. H. and Amy, G., "BOM removal during biofiltration," J. AWWA, 90(12), 42-52(1998). 

  55. von Gunten, U. and Hoigne, J., "Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions," Environ. Sci. Technol., 28(7), 1234-1242(1994). 

  56. Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M., and Aieta, E. M., "The occurrence of disinfection by-products in US drinking water," J. AWWA, 81(8), 41-53(1989). 

  57. Song, R., Westerhoff, P., Minear, R., and Amy, G., "Bromate minimization during ozonation," J. AWWA, 89(6), 69-78 (1997). 

  58. Buffle, M., Galli, S., and von Gunten, U., "Enhanced bromate control during ozonation: the chlorine-ammonia process," Environ. Sci. Technol., 38(19), 5187-5195(2004). 

  59. Amy, G. L., Westerhoff, P., Minear, R. A., and Song, R., Formation and Control of Brominated Ozone By-Products, AWWA, Denver, Colo., (1997). 

  60. Siddiqui, M. S. and Amy, G. L., "Factors affecting DBP formation during ozone-bromide reaction," J. AWWA, 85, 63-72(1993). 

  61. Hofmann, R. and Andrews, R. C., "Impact of $H_{2}O_{2}$ and (bi)carbonate alkalinity on ammonia's inhibition of bromate formation," Water Res., 40, 3343-3348(2006). 

  62. Shukairy, H. M., Miltner, R. J., and Summers, R., "Bromide's effect on DBP formation, speciation and control: part 1, ozonation," J. AWWA, 86, 72-87(1994). 

  63. AWWARF, Pilot-scale Evaluation of Ozone and Peroxone, AWWARF and AWWA, (1991). 

  64. Mosteo, R., Miguel, N., Martin-Muniesa, S., Ormad, M. P., and Ovelleiro, J. L., "Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process," J. Hazard. Mater., 172, 661-666(2009). 

  65. Irabelli, A., Jasim, S., and Biswas, N., "Pilot-scale evaluation of ozone vs. peroxone for trihalomethane formation," Ozone Sci. Eng., 30, 356-366(2008). 

  66. Ledakowicz, S. and Gonera, M., "Optimization of oxidants dose for combined chemical and biological treatment of textile wastewater," Water Res., 33(11), 2511-2516(1999). 

  67. Krasner, S., Glaze, W., Weinberg, H., Daniel, P., and Najm, I., "Formation and control of bromate during ozonation of waters containing bromide," J. AWWA, 85(1), 73-81(1993). 

  68. Lafi, W. K., Shannak, B., Al-Shannag, M., Al-Anber, Z., and Al-Hasan, M., "Treatment of olive mill wastewater by combined advanced oxidation and biodegradation," Sep. Purif. Technol., 70, 141-146(2009). 

  69. Brandhuber, P., "Detecting hydrogen peroxide concentration in advanced oxidation treatment processes," Waterscapes, 17(1), 5-6(2006). 

  70. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st edition, Eaton, A. D., Clesceri, L. S., Rice, E. W., and Greenberg, A. E., (Eds.), AWWA, Baltimore, Maryland, (2005). 

  71. Gordon, G., Cooper, W. J., Rice, R. G., and Pacey, G. E., Disinfectant Residual Measurement Methods, 2nd edition, AWWARF and AWWA, Denver, Colorado, (1992). 

  72. Masschelein, W., Denis, M., Ledent, R., "Spectrophotometric determination of residual hydrogen peroxide," Water Sewage Works, 69-72(1977). 

  73. Dukes, E. K. and Hydier, M. L., "Determination of peroxide by automated chemistry," Anal. Chem., 36, 1689-1690(1964). 

  74. Modrzejewska, B., Guwy, A. J., Dinsdale, R., and Hawkes, D. L., "Measurement of hydrogen peroxide in an advanced oxidation process using an automated biosensor," Water Res., 41, 260 -268(2007). 

  75. Pashkova, A., Svajda, K., Black, G., and Dittmeyer, R., "Automated system for spectrophotometric detection of liquid phase hydrogen peroxide for concentrations up to 5% w/w," Rev.Sci. Instru., 80, 1-5(2009). 

  76. Zwiener, C. and Frimmel, F. H., "Oxidative treatment of pharmaceuticals in water," Water Res., 34, 1881-1885(2000). 

  77. Safarzadeh-Amiri, A., " $O_{3}/H_{2}O_{2}$ treatment of methyl-tert-butyl ether (MTBE) in contaminated waters," Water Res., 35(15), 3706-3714(2001). 

  78. Huber, M. M., Canonica, S., Park, G. Y., and von Gunten, U., "Oxidation of pharmaceuticals during ozonation and advanced oxidation processes," Environ. Sci. Technol., 37, 1016-1024(2003). 

  79. Schroder, H. Fr. and Meesters, R. J. W., "Stability of fluorinated surfactants in advanced oxidation processes-a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography- multiple stage mass spectrometry," J. Chromatogr., A, 1082, 110-119(2005). 

  80. Alsheyab, M. A. and Munoz, A. H., "Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide $(H_{2}O_{2}/O_{3})$ ," Desalination, 194, 121-126(2006). 

  81. Rivera-Utrilla, J., Mendez-Diaz, J., Sanchez-Polo, M., Ferro-Garcia, M. A., and Bautista-Toledo, I., "Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on $O_{3}$ and $O_{3}/H_{2}O_{2}$ ," Water Res., 40, 1717-1725(2006). 

  82. Kusic, H., Koprivanac, N., and Bozic, A. L., "Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies," Chem Eng. J., 123, 127-137(2006). 

  83. Yu, Y., Ma, J., and Hou, Y., "Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process," J. Environ. Sci., 18(6), 1043-1049(2006). 

  84. Lee, C., Yoon, J., and von Gunten, U., "Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide," Water Res., 41, 581-590(2007). 

  85. Ji, M. S., Xue, Y. L., Zhong, L. C., Xiao, H. G., Xue, Z., and Zhen, Z. X., "Degradation of macromolecular tannic acid by $O_{3}/H_{2}O_{2}$ ," Water Sci. Technol., 57(12), 2043-2050(2008). 

  86. Kim, I. H., Tanaka, H., Iwasaki, T., Takubo, T., Morioka, T., and Kato, Y., "Classification of the degradation of 30 pharma ceuticals in water with ozone, UV and $H_{2}O_{2}$ ," Water Sci. Technol., 57(2), 195-200(2008). 

  87. Chen, W. R., Wu, C., Elovitz, M. S., Linden, K. G., and Suffet, I. H., "Reaction of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals," Water Res., 42, 137-144(2008). 

  88. Maniero, M. G., Bila, D. M., and Dezotti, M., "Degradation and estrogenic activity removal of $17\beta$ -estradiol and $17\alpha$ -ethinylestradiol by ozonation and $O_{3}/H_{2}O_{2}$ ," Sci. Total Environ., 407, 105-115(2008). 

  89. De Witte, B., Dewulf, J., Demeestere, K., Van Langenhove, H., "Ozonation and advanced oxidation by the peroxone process of ciprofloxacin," J. Hazard. Mater., 161, 701-708(2009). 

  90. Popiel, S., Nalepa, T., Dzierzak, D., Stankiewicz, R., and Witkiewicz, Z., "Rate of dibuthylsulfide decomposition by ozonation and $O_{3}/H_{2}O_{2}$ advanced oxidation process," J. Hazard. Mater., 164, 1364-1371(2009). 

  91. Li, K., Hokanson, D. R., Crittenden, J. C., Trussell, R. R., and Minakata, D., "Evaluating $UV/H_{2}O_{2}$ processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources," Water Res., 42, 5045-5053(2008). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로