$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

황정(黃精)과 Kaempferol의 지방세포 분화 억제 효과
Anti-adipogenic Effect of Kaempferol, a Component of Polygonati Rhizoma 원문보기

大韓韓醫學會誌 = Journal of Korean Oriental Medicine, v.31 no.2, 2010년, pp.158 - 166  

장재식 (동국대학교 한의과대학 내과학교실) ,  정지천 (동국대학교 한의과대학 내과학교실)

Abstract AI-Helper 아이콘AI-Helper

Objective: It has been reported that Polygonati rhizoma (Pr) has anti-hyperglycemia, anti-triglycemia, anti-diabetic, and anti-tumor activity. Total extract of Pr was tested to identify anti-adipogenic activity in 3T3-L1 differentiation and molecular mechanism of Pr in 3T3-L1 differentiation. Method...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 저자들은 黃精과 그 성분인 kaempferol이 지질대사에 관여하는 지와 그 분자적 기전을 규명하기 위하여 지방세포의 분화에 억제 효과를 나타내는 지를 검토하고 분화에 관련된 유전자의 발현을 관찰하여 유의한 결과를 얻었기에 보고한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
지방전구세포의 역할은 무엇인가? 지방조직은 백색지방조직 (white adipose tissue)과 갈색지방조직 (brown adipose tissue)으로 구분되며, 지방세포와 섬유질로 이루어져 있다. 지방전구세포는 인체내의 에너지 대사 및 지질대사 조절을 통해 지방세포로 분화가 유도되어 지방조직을 형성
지방조직은 무엇으로 구별되는가? 지방조직은 백색지방조직 (white adipose tissue)과 갈색지방조직 (brown adipose tissue)으로 구분되며, 지방세포와 섬유질로 이루어져 있다. 지방전구세포는 인체내의 에너지 대사 및 지질대사 조절을 통해 지방세포로 분화가 유도되어 지방조직을 형성
지방전구세포에서 지방세포로의 분화를 유도하는 전사인자로는 무엇이 있는가? 한다. 많은 연구를 통해 지방세포 분화에 작용하는 유전자들이 연구되고 있으며, 중요한 기능을 하는 유전자로는 peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT-enhancer binding protein(C/EBP) family, sterol regulatory element binding protein (SREBP) family가 보고되어 있다. 이들은 전사인자로서 각각의 표적단백질의 발현을 조절하여 지방전구세포에서 지방세포로의 분화를 유도한다1-3).
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev. 1995;5(5):571-6. 

  2. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995;64:345-73. 

  3. Hamm JK, el Jack AK, Pilch PF, Farmer SR. Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake. Ann N Y Acad Sci 1999;892:134-45. 

  4. Gregoire FM, Smas CM, Sul HS: Understanding adipocyte differentiation. Physiol Rev 1998;78(3):783-809. 

  5. Park S, Hong SM, Ahn IS, Kim YJ, Lee JB. Huang-Lian-Jie-Du-Tang Supplemented with Schisandra chinensis Baill. and Polygonatum odoratum Druce Improved Glucose Tolerance by Potentiating Insulinotropic Actions in Islets in 90% Pancreatectomized Diabetic Rats. Biosci Biotechnol Biochem. 2009. (in press) 

  6. 中醫硏究院 主編. 中醫症狀鑑別診斷學. 北京:人民衛生出版社. 1987:43. 

  7. 張介賓. 景岳全書. 上海, 上海科學技術出版社. 1984:194. 

  8. 焦東海. 全國 第3屆 肥?病 學術交流會論文綜述. 中醫雜誌. 1992;3:47-8. 

  9. Heo SY, Kang HS. East-Wast Medical Discussion and Treatment of Obesity. J Oriental Rehabilitation Medicine. 1997;7(1):272-86. 

  10. Lee SI. Herbs. Seoul:Medical Herb Co. 1983:128-9. (Korean) 

  11. Miura T, Kato A, Usami M, Kadowaki S, Seino Y. Effect of polygonati rhizoma on blood glucose and facilitative glucose transporter isoform 2 (GLUT2) mRNA expression in Wistar fatty rats. Biol Pharm Bull. 1995;18(4):624-5. 

  12. Kato A, Miura T. Hypoglycemic activity of polygonati rhizoma in normal and diabetic mice. Biol Pharm Bull. 1993;16(11):1118-20. 

  13. Roh SW, Kim JB. Effects of Polygonati Rhizoma on the Diet-induced Hyperlipidemia in Rats. Korean J Oriental Physiology & Pathology. 2008;22(5):1147-51. (Korean) 

  14. Kato A, Miura T, Yano H, Masuda K, Ishida H, Seino Y. Suppressive effects of polygonati rhizoma on hepatic glucose output, GLUT2 mRNA expression and its protein content in rat liver. Endocr J. 1994;41(2):139-44. 

  15. Miura T, Kato A. The difference in hypoglycemic action between polygonati rhizoma and polygonati officinalis rhizoma. Biol Pharm Bull. 1995;18(11):1605-6. 

  16. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols. Food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727-47. 

  17. Spencer JP. Flavonoids: modulators of brain function? Br J Nutr. 2008;99E Suppl1:ES60-77. 

  18. Parveen Z, Deng Y, Saeed MK, Dai R, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi 2007;127(8). 1275-9. 

  19. Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol In Vitro. 2008;22(8):1965-70. 

  20. Gabrielska J, Soczynska-Kordala M, Przestalski S. Antioxidative effect of kaempferol and its equimolar mixture with phenyltin compounds on UV-irradiated liposome membranes. J Agric Food Chem. 2005;53(1):76-83. 

  21. Kang JW, Kim JH, Song K, Kim SH, Yoon JH, Kim KS. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother Res. 2009. (in press) 

  22. Li W, Du B, Wang T, Wang S, Zhang J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem Biol Interact. 2009;177(2):121-7. 

  23. Kataoka M, Hirata K, Kunikata T, Ushio S, Iwaki K, Ohashi K, et al. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J Gastroenterol. 2001;36(1):5-9. 

  24. Park MJ, Lee EK, Heo HS, Kim MS, Sung B, Kim MK, et al. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J Med Food. 2009;12(2):351-8. 

  25. Lopez-Sanchez C, Martin-Romero FJ, Sun F, Luis L, Samhan-Arias AK, Garcia-Martinez V et al. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusioninduced damage in rat brain. Brain Res. 2007;1182:123-37. 

  26. Middleton E, Jr., Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673-751. 

  27. Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008;82(11-12):615-22. 

  28. Lee CJ, Lee JH, Seok JH, Hur GM, Park Js J, Bae S, et al. Effects of betaine, coumarin and flavonoids on mucin release from cultured hamster tracheal surface epithelial cells. Phytother Res. 2004;18(4):301-5. 

  29. Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49(6):3106-12. 

  30. Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 2006;54(8):2951-6. 

  31. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 1999;19(8):5495-503. 

  32. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 1996;16(7): 3410-9. 

  33. Spiegelman BM, Choy L, Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J Biol Chem. 1993;268(10):6823-6. 

  34. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, et al. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology. 2002;143(6):2106-18. 

  35. Lin J, Della-Fera MA, Baile CA. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res. 2005;13(6):982-90. 

  36. Pinent M, Blade MC, Salvado MJ, Arola L, Hackl H, Quackenbush J, et al. Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation. Int J Obes (Lond). 2005;29(8):934-41. 

  37. Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun. 2007;361(1):208-13. 

  38. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996;10(9):1096-107. 

  39. Brun RP, Kim JB, Hu E, Altiok S, Spiegelman BM. Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol. 1996;8(6):826-32. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로