$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

배추 유전체 염기서열 해독 전략과 현황
The strategy and current status of Brassica rapa genome project 원문보기

Journal of plant biotechnology = 식물생명공학회지, v.37 no.2, 2010년, pp.153 - 165  

문정환 (농촌진흥청 국립농업과학원 농업생명자원부 유전자분석개발과) ,  권수진 (농촌진흥청 국립농업과학원 농업생명자원부 유전자분석개발과) ,  박범석 (농촌진흥청 국립농업과학원 농업생명자원부 유전자분석개발과)

Abstract AI-Helper 아이콘AI-Helper

Brassica rapa is considered an ideal candidate to act as a reference species for Brassica genomic studies. Among the three basic Brassica species, B. rapa (AA genome) has the smallest genome (529 Mbp), compared to B. nigra (BB genome, 632 Mbp) and B. oleracea (CC genome, 696 Mbp). There is also a la...

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 염기서열 분석 기술과 기기의 개발은 발전 속도가 매우 빠른 분야로서 프로젝트가 진행되는 중에 분석 능력이 크게 향상되고 분석 비용도 크게 감소한 차세대 염기 서열 분석기기가 상용화 되었다. 따라서 BrGSP 참여국에서는 GS-FLX 염기서열 분석기를 사용하여 10개 이상의 BAC 클론을 함께 분석하여 clone-by-clone 분석의 단점을 보완하고자 시도를 하였다. 이에 한국도 GS-FLX와 ABI 3730xl을 병행한 BAC 클론 분석을 수행하여 약 20% 정도의 비용을 절감할 수 있었지만, 서열 통합 작업이 복잡하고 GS-FLX의 pyrosequencing에서 나타나는 poly-mononucleotide 의 해독 불능 등의 문제점도 노출되었다.
  • info). 본고는 농촌진흥청 국립농업과학원의 배추 유전체 해독 연구를 통해 수행된 연구 결과를 중심으로 작성하였다.
  • 유전체 염기서열 후 주석달기 (annotation)와 유전자 기능 연구를 목적으로 배추의 발현 유전자 (EST) 152,253개의 염기서열을 분석하였다. EST 분석을 위하여 배추의 다양한 조직과 발달 단계에서 그리고 병 처리 및 수분 스트레스 처리 후 등 총 33종의 cDNA 유전자은행을 제작하고 각 cDNA 유전자은행별로 분석되는 EST의 중복성을 고려하여 EST 데이터를 생산하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
배추과 작물의 형태적 다양성은 무엇으로부터 기인된 것인가? 배추과 작물은 크고 다양한 잎과 꽃 기관의 형태적 특징을 나타낸다. 이러한 형태적 다양성은 배추과 작물의 염색체 배수성 (polyploidy)에 기인하는 유전체 수준의 변화에 근거한다 (Lukens et al. 2004).
배추과에서 작물로서 중요한 종으로 무엇이 있는가? 배추과는 13-19개의 족 (族)으로 구분할 수 있는데, 배추족 (Brassiceae tribe)은 약 240개 종을 포함한다. 작물로서 중요한 종들은 유지작물인 유채 (B. napus)와 갓 (B. juncea), 채소작물인 배추 (B. rapa)와 양배추 (B. oleracea), 그리고 양념작물인 흑겨자 (B. nigra) 등이 있다. 배추류 식물은 현재 이용되는 것 외에도 종간 교잡 등을 통한 새로운 채소작물의 개발은 물론 산업용 오일 등 물질 생산을 위한 분자농업 (molecular farming) 기주식물로의 개발 가능성도 크다.
야생종 배추류 식물은 어떠한 기능을 가지고 있는가? 배추류 식물은 현재 이용되는 것 외에도 종간 교잡 등을 통한 새로운 채소작물의 개발은 물론 산업용 오일 등 물질 생산을 위한 분자농업 (molecular farming) 기주식물로의 개발 가능성도 크다. 또한 야생종들은 핵 및 세포질 웅성불임, 병충 저항성, 기상 스트레스 저항성 등 농업적으로 유용한 형질을 보유하고 있는 중요한 자원이다. 따라서 배추류 식물을 지속적으로 육종 프로그램에 도입하고 활용하기 위하여 배추의 유전체에 대한 연구와 이해가 필요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (46)

  1. Ananiev EV, Phillips RL, Rines HW (1998) Chromosomespecific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073-13078 

  2. Ayele M, Haas BJ, Kumar N, Wu H, Xiao Y, Van Aken S, Utterback TR, Wortman JR, White OR, Town CD (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487-495 

  3. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93: 607-619 

  4. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433-438 

  5. Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KF, Rogers J, Quetier F, Oldroyd GE, Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959-14964 

  6. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537-545 

  7. Choi HK, Mun J-H, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289-15294 

  8. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777-792 

  9. Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, Mc-Combie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468-2474 

  10. Ding Y, Johnson MD, Chen WQ, Wong D, Chen YJ, Benson SC, Lam JY, Kim YM, Shizuya H (2001) Five-color-based high-information-content fingerprinting of bacterial artificial chromosome clones using type IIS restriction endonucleases. Genomics 74:142-154 

  11. Economic Research Service USDA. (2008) Vegetables and melons outlook: http://www.ers.usda.gov/Publications/VGS/Tables/World.pdf 

  12. Gregory SG, Howell GR, Bentley DR (1997) Genome mapping by fluorescent fingerprinting. Genome Res 7:1162-1168 

  13. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157-165 

  14. International Human Genome Sequencing Consortium (2001) A physical map of the human genome. Nature 409: 934-941 

  15. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229-235 

  16. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29-39 

  17. Koo DH, Plaha P, Lim YP, Hur Y, Bang JW (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109:1346-1352 

  18. Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T(2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276-283 

  19. Kwon SJ, Kim DH, Lim MH, Long Y, Meng JL, Lim KB, Kim JA, Kim JS, Jin M, Kim HI, Ahn SN, Wessler SR, Yang TJ, Park BS (2007) Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol Genet Genom 278:361-370 

  20. Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y,Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol Cells 26:595-606 

  21. Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19:436-444 

  22. Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim YP, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173-183 

  23. Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc Lond 82:665-674 

  24. Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378-389 

  25. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516-525 

  26. Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A, Crockett J, Fedele J, Grover H, Gund C, McCombie WR, McDonald K, McPherson J, Mudd N, Parnell L, Schein J, Seim R, Shelby P, Waterston R, Wilson R (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet 22:265-270 

  27. Mun J-H, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: A resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541-2555 

  28. Mun J-H, Kwon SJ, Yang TJ, Kim HS, Choi BS, Baek S, Kim JS, Jin M, Kim JA, Lim MH, Lee SI, Kim HI, Kim H, Lim YP, Park BS (2008) The first generation of a BACbased physical map of Brassica rapa. BMC Genom 9:280 

  29. Mun J-H, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111 

  30. Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H, Wing RA, Messing J, Soderlund C (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27-38 

  31. O'Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoelogous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233-243 

  32. Park JY, Koo DH, Hong CP, Lee SJ, Jeon JW, Lee SH, Yun PY, Park BS, Kim HR, Bang JW, Plaha P, Bancroft I, Lim YP (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genom 274:579-588 

  33. Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13:644-650 

  34. Quiniou SMA, Waldbieser GC, Duke MV (2007) A first generation BAC-based physical map of the channel catfish. BMC Genom 8:40 

  35. Rana D, van den Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I. (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725-33 

  36. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39:253-262 

  37. Soderlund C, Humphray S, Dunham I, French L (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 11:934-941 

  38. The Arabidopsis Genome Initiative (2004) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815 

  39. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348-1359 

  40. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389-452 

  41. Xu Z, Sun S, Covaleda L, Ding K, Zhang A, Wu C, Scheuring C, Zhang HB (2004) Genome physical mapping with largeinsert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. Genomics 84:941-951 

  42. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequencelevel analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339-1347 

  43. Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Kim SH, Lim YP, Park BS (2005) The Korea Brassica Genome Projects: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Compar Funct Genom 6:138-146 

  44. Yang TJ, Kwon SJ, Choi BS, Kim JS, Jin M, Lim KB, Park JY, Kim JA, Lim MH, Kim HI, Lee HJ, Lim YP, Paterson AH, Park BS (2007) Characterization of terminal-repeat retrotransposon in miniature (TRIM) in Brassica relatives. Theor Appl Genet 114:627-636 

  45. Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589-5594 

  46. Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucl Acid Res 32:2023-2030 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로