$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

산불사면에 대한 토양침식모형의 적용 평가 - RUSLE, WEPP, SEMMA
Applying Evaluation of Soil Erosion Models for Burnt Hillslopes - RUSLE, WEPP and SEMMA 원문보기

大韓土木學會論文集, Journal of the Korean Society of Civil Engineers, B. 수공학, 해안 및 항만공학, 환경 및 생태공학, v.31 no.3B, 2011년, pp.221 - 232  

박상덕 (강릉원주대학교 토목공학과) ,  신승숙 (강릉원주대학교 방재연구소)

초록
AI-Helper 아이콘AI-Helper

산불 사면의 토양침식에 대하여 세 개의 토양침식 모형의 적용성을 평가하였다. 영동지역에서 발생한 2000년 대규모 산불지역 조사구에서 조사된 자료가 분석에 사용되었다. 본 연구에서 채택한 토양침식 모형은 경험적 모형인 RUSLE, 물리적 모형인 WEPP의 산림지역 적용 모드, 산불사면을 대상으로 개발된 SEMMA이다. 이들 모형으로 산정한 지표유출량과 토양 침식량을 관측치와 비교하였다. 적용결과 모든 모형들은 토사유출량의 최대치를 저평가 하였으며, RUSLE와 WEPP은 2배 이상의 차이를 보였다. SEMMA는 가장 좋은 모형반응계수, 결정계수, 모의효율을 나타내었다. 산불발생 경과연수에 따른 모형 적용 평가에서 산불에 의해 교란된 초기 단계에서는 모든 모형이 저평가하였다. 산불 사면에 대한 토양침식 모의 결과는 관측치가 크면 과소 예측하는 경향을 보였다. 산불직후 반발수력이 커진 고은입자 토양의 과대 노출로 작은 규모의 강우에도 많은 양의 토사유출이 발생할 수 있음에도 불구하고 이와 같이 과소 예측하는 것은 이들 모형이 산불의 영향으로 가중되는 토양침식 영향인자를 반영하는데 한계를 갖고 있기 때문으로 보인다.

Abstract AI-Helper 아이콘AI-Helper

Applicability of three soil erosion models for burnt hillslopes was evaluated. The models were estimated with the data from plots established after tremendous wildfire occurred in the east coastal region. Soil erosion and surface runoff were simulated by the Water Erosion Prediction Project (WEPP) a...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
토양침식을 정량적으로 산정하는 것의 목표는 무엇인가? 토양침식의 위험도를 평가하고 침식조절방법을 결정하기 위해서 토양침식을 정량적으로 산정하는 것이 필요하다. 토양침식 및 토사유출 예측모형은 토사유출 영향인자들을 측정한 자료에 근거하여 만든 경험적인 모형과 침식의 역학적 과정을 모사한 물리적 산정모형으로 크게 구분한다.
토양침식 및 토사유출 예측모형을 구분하면 무엇이 있는가? 토양침식의 위험도를 평가하고 침식조절방법을 결정하기 위해서 토양침식을 정량적으로 산정하는 것이 필요하다. 토양침식 및 토사유출 예측모형은 토사유출 영향인자들을 측정한 자료에 근거하여 만든 경험적인 모형과 침식의 역학적 과정을 모사한 물리적 산정모형으로 크게 구분한다. 1970년대 중반 이후 개발된 다양한 토양침식 모형의 구조는 농업 지역의 유출 및 토양침식에 작물의 재배방법과 윤작이 미치는 영향을 예측하기 위한 것이 지배적이었다.
WEPP의 입력자료의 분류 범주에는 무엇이 있는가? WEPP의 구성은 일별 기후를 모의하기 위한 추계학적인 기상자료 모의발생, 수정 Green-Ampt 침투식을 토대로 한 침투 및 유출, 토양과 물의 상호작용, 식생 생장, 식생잔류물분해, 배수 등의 요소로 구성되어있다. 입력자료는 식생조건과 관리방법, 사면, 토양, 기후의 4가지 범주로 분류된다. 또한 모형은 경작지와 방목지, 연속강우와 단일호우 조건에 대해 적용할 수 있다(Flanagan and Nearing, 1995).
질의응답 정보가 도움이 되었나요?

참고문헌 (56)

  1. 마수봉(2005) 소규모 조사구 규모의 산지사면에서 유출 및 토양 침식에 대한 WEPP의 적용. 공학석사논문, 강릉대학교, pp. 39-79. 

  2. 박상덕 등(2001) 강원도 산불지역 재해의 저감대책 수립 연구보고서, 11-1310148-000088-01, 행정자치부 국립방재연구소, pp. 196-198. 

  3. 박상덕 등(2005a) 산지의 토양침식모형(SEMMA) 실용화 연구 연구보고서, 11-1660030-00035-01, 소방방재청 국립방재연구소, pp. 55-64. 

  4. 박상덕 등(2006) 지역특성을 고려한 토양침식모형의 매개변수 산정방안 연구보고서, 11-1660080-000017-01, 국립방재교육연구원 방재연구소, pp. 4-26. 

  5. 박상덕(2008) 산불지역의 WEPP 매개변수 추정. 한국수자원학회 논문집, 한국수자원학회, 제41권 제6호, pp. 565-574. 

  6. 박상덕, 신승숙, 이규송(2005b) 산불지역의 유출 및 토양침식 민감도. 한국수자원학회논문집, 한국수자원학회, 제38권, 제1호, pp. 60-61. 

  7. 박상덕, 이규송(2007) 산불지역 강우유출 및 토사유출 조사 자료집. 강릉대학교 방재연구소. 

  8. 신승숙(2002) 산지유역의 토사유출에 관한 연구. 공학석사논문, 강릉대학교, pp. 47-51. 

  9. 신승숙, 박상덕, 조재웅, 이규송(2008) 양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향. 대한토목학회논문집, 대한토목학회, 제28권 제4B호, pp. 393-403. 

  10. 이규송 등(2004a) '04년도 산지시험유역 운영을 통한 토사재해 저감효과 분석 연구보고서, 11-1660030-000003-01, 소방방재청 국립방재연구소, pp. 97-118. 

  11. 이규송, 박상덕(2005) 산화적지에서 지상부 식생구조와 표토에 분포하는 세근의 관계. 한국생태학회지, 한국생태학회, 제28권, 3호, pp. 149-156. 

  12. 이규송, 정연숙, 김석철, 신승숙, 노찬호, 박상덕(2004b) 동해안산불 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달. 한국생태학회지, 한국생태학회, 제27권 제2호, pp. 99-106. 

  13. Andreu, V., Imeson, A.C., and Rubio, J.L. (2001) Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. CATENA, Vol. 44. pp. 80-82. 

  14. Arnold, J.G., Weltz, M.A., Alberts, E.E., and Flanagan, D.C. (1995) Chapter 8. Plant growth component. In: D. C. Flanagan, and M. A. Nearing (Editors), WEPP Technical Documentation, NSERL Report No. 10, West Lafayette, IN. 

  15. Beasley, R.P., Huggins, L.F., and Monke, E.J. (1980) ANSWERS, a model for watershed planning. Transactions of the American Association of Agricultural Engineers Vol. 23, pp. 938-944. 

  16. Bhuyan, S.J., Kaltia, P.K., Janssen K.A., and Barnes, P.L. (2002) Soil loss Predictions with three erosion simulation models. Environmental Modeling & Software, Vol. 17, pp. 137-146. 

  17. Covert, S.A. (2003) Accuracy Assessment of WEPP-based Erosion Models on Three Small, Harvested and Burned Forest Watersheds. MS Thesis, Univ. Idaho, Moscow, ID. 

  18. Covert, S.A., Robichaud, P.R., Elliot, W.J., and Link, T.E. (2005) Evaluation of runoff prediction from WEPP-based erosion models for harvested and burned forest watersheds. Trans. ASAE, Vol. 48, pp. 1091-1100. 

  19. Dissmeyer, G.E. and Foster, G.R. (1984) A Guide for Predicting Sheet and Rill Erosion on Forest Land. Forest Service Technical Publication RA-TP6, United States Department of Agriculture. 

  20. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphres, G.S., and Wallbrink, P.J. (2006) Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology, Vol. 319. pp. 295-311. 

  21. Dun, S., Wu, J.Q., Elliot, W.J., Robichaud, P.R., Flanagan, D.C., Frankenberger, J.R., Brown, R.E., and Xu. A.C. (2009) Adapting the water erosion prediction project (WEPP) model for forest applications. Journal of Hydrology, Vol. 366, pp. 46-54. 

  22. Elliot, W.J., Luce, C.H., and Robichaud, P.R. (1996) Predicting sedimentation from timber harvest areas with the wepp model. In: Proc. 6th Fed. Interagency Sedimentation Conf., March 10-.14, 1996. Las Vegas, NV. pp. IX-46-53. 

  23. Elliot, W.J., Robichaud, P.R., and Luce, C.H. (1995) Applying the WEPP erosion model to timber harvest areas. In: Proc. ASCE Watershed Manage Conf., August 14-.16, 1995. San Antonio, TX, pp. 83-92. 

  24. Ferreira, V.A. and Smith, R.E. (1992) OPUS, an integrated simulation model for transport of nonpoint-source pollutants at the field scale, vol., user manual. U.S. Department of Agricultural Search Service 90. US Depart Agriculture-Agricultural Research Service, Washington DC. 

  25. Flanagan, D.C. and Nearing, M.A.(eds)(1995) USDA-Water Erosion Prediction Project (WEPP) version 95.7, hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory Report 10. US Department of Agriculture-Agricultural Search Service, West Lafayette. 

  26. Gilley, J.E., Woolhiser, D.A., and McWhorter, D.B. (1985) Interrill soil erosion - Part II: Testing and use of model equations. Transaction of the American Society of Agricultural Engineers. Vol. 28, pp. 154-159. 

  27. Gronsten, H.A. (2006) Prediction of surface runoff and soil loss in southeastern Norway using the WEPP Hillslope model. Soil & Tillage Research, Vol. 82, pp. 186-199. 

  28. Haan, D.T., Barfield, B.J., and Hayes, J.C. (1994). Design hydrology and sedimentology for small catchments. Academic Press. pp. 277-284. 

  29. Heusch, B. (1970) L'erosion du Pre-Rif. Une etude quantitative de l'erosion hydraulique dans les collines marneuses du Pre-Rif occidental. Annales de Pecherches Forestieres de Maroc. Vol. 12, pp. 9-176. 

  30. Inbar, M., Wittenberg, L., and Tamir M. (1997) Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. IJWF, Vol. 7, pp. 285-294. 

  31. Klik, A. and Zartl, A.S.(2001) Comparison of soil erosion simulations using WEPP and RUSLE with field measurements. Soil Erosion Research for the 21st Centry, ASAE.701P0007, pp. 350-353. 

  32. Knisel, W.G.(ed) (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. US Department of Agriculture Conservation Research Report 26. US Depart Agriculture-Science and Education Administration, Washington DC. 

  33. Luce, C.H. (1995) Forests and wetlands. In: Ward, A.D., Elliot, W.J. (Eds.), Environmental Hydrology. Lewis Publishers, Boca Raton, FL, pp. 253-283. 

  34. McCuen, R.H. (1973) The role of sensitivity analysis in hydraulic modeling. Journal of Hydrology. Vol. 18, pp. 37-53. 

  35. Moffet, C.A., Pierson, F.B., Robichaud, P.R, Spaeth, K.E., and Hardegree, S.P. (2007) Modeling soil erosion on steep sagebrush rangeland before and after prescribed fire. CATENA Vol. 32, pp. 218-228. 

  36. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol. Vol. 10, pp. 282-290. 

  37. Nearing, M.A. (1998) Why soil erosion models over-predict small soil losses and uner-predict large soil losses. CATENA, Vol. 32, pp. 15-22. 

  38. Nyhan, J.W., Koch, S., Balice, R., and Loftin, S. (2001) Estimaton of soil erosion in burnt forest areas of the Cerro Grande Five in Los Alamos, New Mexico. Res. Pap. Los Alamos, NM: US Department of Energy, Ecology Group, Los Alamos National Laboratory. pp. 25. 

  39. Odemerho, F.O. (1986) Variation in erosion-slope relationship on cut slopes along a tropical highway. Singapore Journal of Tropical Geography. Vol. 7, pp. 98-107. 

  40. Onda, Y., Dietrich, W.E., and Booker, F. (2008) Evolution of overland flow after a sever forest fire, pont reyes, California. CATENA, Vol. 72. pp. 13-20. 

  41. Poesen, J. (1984) The influence of slope angle on infiltration rate and Hortonian overland flow volume. Zeitschrift fur Geomeorphologie Supplementband. Vol. 49, pp. 117-131. 

  42. Quinn, N.W., Morgan, R.P.C., and Smith, A.J. (1980) Simulation of soil erosion induced by human trampling. Journal of Environmental Management. Vol. 10, pp. 155-165. 

  43. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Epuation (RUSLE). US Department of Agriculture Handbook 703. US Department of Agriculture- Agricultural Search Service, Washington DC. 

  44. Savabi, M.R. (2001) Determining soil water characteristics for application of WEPP model in south florida, ASAE, Vol. 44, No. 1, pp. 59-70. 

  45. Schroder, A. (2000) Chapter 11. WEPP, EUROSEM, E_D2: Results of Applications at the Plot Scale. In Soil Erosion: Application of Physically Based Models, Springer-Verlag Berlin Heidelberg New York. 

  46. Scott, D.F. and van Wyke, D.B. (1990) The effects of wildfire on soil wettability and hydrological behavior of an afforested catchment. Journal of Hydrlolgy, Vol. 121. pp. 239-256. 

  47. Sharpley, A.N. and Williams, J.R.(eds) (1990a) EPIC: Erosion/Productivity Impact Calculator 2, user manual. US Department of Agriculture Technical Bulletin 1768. US Department of Agriculture Agriculture - Agricultural Research Service, Washing DC. 

  48. Sharpley. A.N. and Williams, J.R.(eds) (1990b) EPIC: Erosion/Productivity Impact Calculator2, user manual. US Department of Agriculture Technical Bulletin 1768. US Department of Agriculture- Agricultural Research Service, Washington DC. 

  49. Smith, R.E. (1992) OPUS, an integrated simulation model for transport of nonpoint-source pollutants at the field scale I, documentation. US Department of Agriculture-Agricultural Research Service 98. US Department of Agriculture-Agricultural Research Service, Washington DC. 

  50. Soto, B. and Diaz-Fierros, F. (1998) Runoff and soil erosion from areas of burnt scrub: Comparsion of experimental results with those predictied by the WEPP model. CATENA, Elsevier, Vol. 31, pp. 257-270. 

  51. Wilcox, B.P. and Simanton, J. R. (1998) Predicting Runoff in Semiarid Woodlands : Evaluation of the WEPP Model. Modeling Soil Erosion by Water, pp. 131-140. 

  52. Wischmeier, W.H., Johnson, C.B., and Cross, B.C.(1971) A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, Vol. 26, No. 5, pp. 189-193. 

  53. Wischmeier, W.H. and Smith, D.D. (1965) Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Agriculture hand book 282. US Department of Agriculture, Washington DC. 

  54. Wischmeier, W.H. and Smith, D.D. (1978) Predicting rainfall erosion losses - a guide to conservation planning. Agriculture Handbook 537. US Department of Agriculture-Science and Education Administration, Washingtion DC. 

  55. Wohlgemuth, P.M., Hubbert, K.R., and Robichaud, P. (2001) The effect of log erosion barriers on post-fire hydrologic response and sediment yield in small forest watersheds, southern California. Hydrological Processes, Vol. 15, pp. 3053-3066. 

  56. Young, R.A., Onstad, C.A., Bosch, D.D., and Anderson, W.P. (1987) AGNPS, Agricultural Nonpoint Source Pollution Model, a watershed analysis tool. Agricultural Research Service Conservation Research Report 35. US Department of Agriculture- Agricultural Research Service, Washington DC. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로