$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

지구적으로 양서류가 감소하고 있다. 수정 후 변태에 이르는 생활사를 수중에서 진행하는 양서류는 수환경 내의 오염물질에 1차적으로 노출되며 독성효과에 대한 감수성이 높아 수환경의 오염에 특히 취약하다. 양서류는 수서생태계의 건강도 지표로서 유용할 뿐 아니라 배아 또는 유생에서 분자 및 개체수준의 다양한 생체지표를 이용한 내분비계장애물질을 비롯한 다양한 환경오염물질의 독성평가 모델로서도 유용하다. 양서류에서 얻어진 독성자료는 수환경 오염물질의 관리와 안전관리기준의 설정에 활발히 이용되고 있다. 다양한 알킬페놀류 화합물이 농업, 공업, 가정활동에 사용되고 있으며, 수환경 내에 잔류한다. 이들은 다양한 수생동물에서 내분비계장애 효과를 갖는 것으로 알려졌다. 본 소고에서는 양서류의 배아, 유생을 대상으로 알킬페놀류 화합물의 종류별, 노출경로 및 농도, 노출기간 및 발생단계 등에 따른 내분비계장애효과와 그 기작에 관한 국내외 자료를 정리하였다.

Abstract AI-Helper 아이콘AI-Helper

Amphibian population declines globally. Aquatic contamination by organic pollutants including endocrine disrupters has been suspected to the one of the reason for distinction of amphibia which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 수환경 내에서 다양한 환경오염물질들은 수생동물에서 에스트로젠 또는 갑상선호르몬의 기능을 교란하며, 특히 양서류의 배아와 유생에서 다양한 기능적 지표들 변화시킨다. 따라서 이들 기능적 지표들을 바이오마커로 활용하여 개별 화학물질 및 환경매체의 생물학적 위해성을 평가할 수 있다.
  • 알킬페놀류를 비롯한 다양한 화학물질 및 그 대사유도체들은 에스트로젠 또는 갑상선호르몬과 유사하거나 길항하는 작용을 한다. 본 소고에서는 국내 외에서 진행되어온 양서류의 배아, 유생 등을 이용한 알킬페놀류 화합물의 독성과 내분비계교란효과에 대한 자료를 정리하였다.
  • 이들은 다양한 수생동물에서 내분비계장애 효과를 갖는 것으로 알려졌다. 본 소고에서는 양서류의 배아, 유생을 대상으로 알킬페놀류 화합물의 종류별, 노출경로 및 농도, 노출기간 및 발생단계 등에 따른 내분비계장애효과와 그 기작에 관한 국내외 자료를 정리하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
EDs는 생체 호르몬의 작용을 교란하여 어디에서 다양한 독성 효과를 나타내는가? 2000). EDs는 생체호르몬의 작용을 교란하여 발생, 번식, 내분비, 면역, 신경계 등에서 다양한 독성효과를 발휘한다. 따라서 환경 잔류성이 높은 EDs의 위해성을 정확히 평가하고 이들 물질의 생산 및 사용에 대한 허용기준치 및 규제 방안을 설정하는 것은 양서류가 서식하는 육수환경의 보존과 관리에 매우 중요하다.
알킬페놀은 무엇인가? 알킬페놀(alkylphenols)은 비이온성 계면활성제로 사용되는 알킬페놀에톡실레이트(APEO)의 분해산물로서 분자적으로 페놀의 벤젠고리에 알킬그룹이 결합되어 있는 비교적 안정한 화합물이다. APEO 자체는 독성물질로 분류되어 있지 않지만, 그 대사생성 물질인 단사슬 APEO, 알킬페놀 및 카르복실 유도체 등은 폐수 또는 음용수의 염소처리 공정에서 mutagenic ring halogenated derivative 를 생성한다.
양서류가 수서생태계의 건강도를 대변하는 지표인 이유는 어떤 생태적 특징 때문인가? 습지 생태계에서 중요한 생태적 지위를 차지하는 양서류는 육상생활을 최초로 시작한 척추동물로 진화와 발생학 연구에 중요한 재료를 제공한다. 수정 후 변태에 이르는 생활사를 수환경에서 진행하는 양서류는 수환경 내의 오염물질에 대해 1차적으로 노출되므로 어류와 마찬가지로 매우 노출 감수성이 높다. 또한 먹이사슬의 중간소비자로 수환경 내의 오염물질의 먹이순환에 따른 독성 효과의 생물농축 효과가 나타날 수 있는 생태적 특징을 갖는다. 따라서 수환경오염에 매우 민감할 뿐 아니라 수서생태계의 건강도를 대변하는 지표로서 유용한 까닭에 발생 중인 배아 또는 유생을 이용한 독성평가 및 이를 활용한 수환경 기준을 설정노력이 다양한 양서류에서 활발하다(Plotner and Gunther 1987; Boyer and Grue 1995; Lahr 1997; Loeffler et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (69)

  1. 계명찬, 이명식, 강희정, 정경아, 안혜선. 2004. 무당개구리 비텔로제닌 유전자의 발현의 RT-PCR 검출법. 환경생물.22:329-335. 

  2. 계명찬, 한명수. 2000. 척추동물의 난황형성과 환경에스트로젠. 환경생물. 18:291-298. 

  3. 김호승, 계명찬, 2003. 프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구. 환경생물. 21:87-100. 

  4. 최영주, 윤춘식, 박주홍, 진정효, 정선우. 2002. 한국산 도롱뇽 (Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성 효과. 한국육수학회지. 35:198-212. 

  5. 환경부. 2001. 내분비계장애물질에 의한 생태영향조사. 

  6. Bevan CL, DM Porter, A Prasad, MJ Howard and LP Henderson. 2003. Environmental estrogens alter early development in Xenopus laevis. Environ. Health Perspect. 111:88-96. 

  7. Blaustein AR and DB Wake. 1995. The puzzle of declining amphibian populations. Sci. Am. 272:52-57. 

  8. Bogi C, G Levy, I Lutz and W Kloas. 2002. Functional genomics and sexual differentiation in amphibians. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133:559-570. 

  9. Bogi C, J Schwaiger, H Ferling, U Mallow, C Steineck, F Sinowatz, W Kalbfus, RD Negele, I Lutz and W Kloas. 2003. Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environ. Res. 93:195-201. 

  10. Boyer R and CE Grue. 1995. The need for water quality criteria for frogs. Environ. Health Perspect. 103:352-357. 

  11. Carey C and CJ Bryant. 1995. Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ. Health Perspect. 103 Suppl 4:13-17. 

  12. Chang CY and E Witschi. 1956. Genetic control and hormonal reversal of sex differentiation in Xenopus. Proc. Soc. Exp. Biol. 93:140-144. 

  13. Christensen JR, JS Richardson, CA Bishop, B Pauli and J Elliott. 2005. Effects of nonylphenol on rates of tail resorption and metamorphosis in Rana catesbeiana tadpoles. J. Toxicol. Environ. Health A. 68:557-572. 

  14. Colborn T and C Clement. 1992. Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/ Human Connection. Princeton Scientific Publishing, Princeton. 

  15. Croteau MC, M Davidson, P Duarte-Guterman, M Wade, JT Popesku, S Wiens, DR Lean and VL Trudeau. 2009. Assessment of thyroid system disruption in Rana pipiens tadpoles chronically exposed to UVB radiation and 4-tert-octylphenol. Aquat. Toxicol. 95:81-92. 

  16. Goleman WL, JA Carr and TA Anderson. 2002. Environmentally relevant concentrations of ammonium perchlorate inhibit thyroid function and alter sex ratios in developing Xenopus laevis. Environ. Toxicol. Chem. 21:590-597. 

  17. Gye MC and DH Kim. 2005. Bisphenol A induces hepatic vitellogenin mRNA in male Bombina orientalis. Bull. Environ. Contam. Toxicol. 75:1-6. 

  18. Hayes T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2002a. Herbicides: feminization of male frogs in the wild. Nature 419:895-896. 

  19. Hayes T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2003. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ. Health Perspect. 111:568-575. 

  20. Hayes TB, A Collins, M Lee, M Mendoza, N Noriega, AA Stuart and A Vonk. 2002b. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Nat. Acad. Sci. 99:5476-5479. 

  21. Heimeier RA, B Das, DR Buchholz and YB Shi. 2009. The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology 150:2964-2973. 

  22. Helleday T, KL Tuominen, A Bergman and D Jenssen. 1999. Brominated flame retardants induce intragenic recombination in mammalian cells. Mutation Research 439:137-147. 

  23. Herbener GH. 1989. Use of the protein A-gold immunocytochemical and enzyme-gold cytochemical techniques in studies of vitellogenesis. Am. J. Anat. 185:244-254. 

  24. Herbener GH, RC Feldhoff and ML Fonda. 1983. A correlated morphometric and biochemical study of estrogen-induced vitellogenesis in male Rana pipiens. J. Ultrastruct. Res. 83:28-42. 

  25. Herrmann T, M Ball, K Rothenbacher and M Wesselmann. 2003. Emissions of tetrabromobisphenol A from computer monitors. Organohalogen Compounds 61:259-262. 

  26. Hinther A, D Domanski, S Vawda and CC Helbing. 2010. Cfin: a cultured frog tadpole tail fin biopsy approach for detection of thyroid hormone-disrupting chemicals. Environ. Toxicol. Chem. 29:380-388. 

  27. Houlahan JE, CS Findlay, BR Schmidt, AH Meyer and SL Kuzmin. 2000. Quantitative evidence for global amphibian population declines. Nature 404:752-755. 

  28. Ikeda Y, W Shen, HA Ingraham and KL Parker. 1994. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8:654-662. 

  29. Ishihara A, N Nishiyama, S Sugiyama and K Yamauchi. 2003. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen. Comp. Endocrinol. 134:36-43. 

  30. Iwamuro S, M Sakakibara, M Terao, A Ozawa, C Kurobe, T Shigeura, M Kato and S Kikuyama. 2003. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen. Comp. Endocrinol. 133:189-198. 

  31. Iwamuro S, M Yamada, M Kato and S Kikuyama. 2006. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and downregulation of retinoid X receptor gamma in Xenopus tail culture. Life Sci. 79:2165-2171. 

  32. Kaneko M, R Okada, K Yamamoto, M Nakamura, G Mosconi, AM Polzonetti-Magni and S Kikuyama. 2008. Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. Gen. Comp. Endocrinol. 155:574-580. 

  33. Kang HS, JS Noh and MC Gye. 2006. Effect of nonylphenol on the expression of hepatic vitellogenin mRNA in male Bombina orientalis (Boulenger). Bull. Environ. Contam. Toxicol. 77:15-20. 

  34. Kitamura S, T Kato, M Iida, N Jinno, T Suzuki, S Ohta, N Fujimoto, H Hanada, K Kashiwagi and A Kashiwagi. 2005. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci. 76:1589-1601. 

  35. Kloas W. 2002. Amphibians as a model for the study of endocrine disruptors. Int. Rev. Cytol. 216:1-57. 

  36. Kloas W and I Lutz. 2006. Amphibians as model to study endocrine disrupters. J. Chromatogr. A. 1130:16-27. 

  37. Kloas W, I Lutz and R Einspanier. 1999. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci. Total Environ. 225:59-68. 

  38. Knudsen FR and TG Pottinger. 1999. Interaction of endocrine disrupting chemicals, singly and in combination, with estrogen-, androgen-, and corticosteroid-binding sites in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 44:159- 170. 

  39. Kohno S, M Fujime, Y Kamishima and T Iguchi. 2004. Sexually dimorphic basal water absorption at the isolated pelvic patch of Japanese tree frog, Hyla japonica. J. Exp. Zool. A Comp. Exp. Biol. 301:428-438. 

  40. Lahr J. 1997. Ecotoxicology of organisms adapted to life in temporary freshwater ponds in arid and semi-arid regions. Arch. Environ. Contam. Toxicol. 32:50-57. 

  41. Lee KM, W Yang, JS Rhee, DS Hwang, CJ Park, MC Gye, JS Lee and I Shin. 2010. Effects of endocrine disruptors on Bombina orientalis P450 aromatase activity. Zoolog. Sci. 27:338-343. 

  42. Loeffler IK, DL Stocum, JF Fallon and CU Meteyer. 2001. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs. Anat. Rec. 265:228-245. 

  43. Lutz I and W Kloas. 1999. Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci. Total Environ. 225:49-57. 

  44. Mann RM and JR Bidwell. 2000. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat. Toxicol. 51:19-29. 

  45. Mann RM and JR Bidwell. 2001. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ. Pollut. 114:195-205. 

  46. Matsumura N, H Ishibashi, M Hirano, Y Nagao, N Watanabe, H Shiratsuchi, T Kai, T Nishimura, A Kashiwagi and K Arizono. 2005. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol. Pharm. Bull. 28:1748-1751. 

  47. Mayer LP, CA Dyer and CR Propper. 2003. Exposure to 4-tertoctylphenol accelerates sexual differentiation and disrupts expression of steroidogenic factor 1 in developing bullfrogs. Environ. Health Perspect. 111:557-561. 

  48. McLachlan JA. 2001. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev. 22:319-341. 

  49. Mitsui N, O Tooi and A Kawahara. 2007. Vitellogenin-inducing activities of natural, synthetic, and environmental estrogens in primary cultured Xenopus laevis hepatocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146:581-587. 

  50. Mommsen TP and PJ Walsh. 1988. Vitellogenesis and oocyte assembly. pp.347-406. In Fish Physiology (Hoar WS and DJ Randall eds.). vol. 11. Academic Press, New York. 

  51. Mosconi G, O Carnevali, MF Franzoni, E Cottone, I Lutz, W Kloas, K Yamamoto, S Kikuyama and AM Polzonetti- Magni. 2002. Environmental estrogens and reproductive biology in amphibians. Gen. Comp. Endocrinol. 126:125-129. 

  52. OECD, 2009 OECD, Test No. 231: Amphibian Metamorphosis Assay, OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. (OECD ed.) OECD Publishing. 

  53. Ohtani H, I Miura and Y Ichikawa. 2000. Effects of dibutyl phthalate as an environmental endocrine disrupter on gonadal sex differentiation of genetic males of the frog Rana rugosa. Environ. Health Perspect. 108:1189-1193. 

  54. Opitz R and W Kloas. 2010. Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles. Gen. Comp. Endocrinol. 168:199-208. 

  55. Opitz R, S Hartmann, T Blank, T Braunbeck, I Lutz and W Kloas. 2006. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles. Toxicol. Sci. 90:337-348. 

  56. Palmer BD and SK Palmer. 1995. Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog. Environ. Health Perspect. 103 Suppl 4:19-25. 

  57. Park CJ, HS Kang and MC Gye. 2010. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3′- triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81:1292-1300. 

  58. Pickford DB, MJ Hetheridge, JE Caunter, AT Hall and TH Hutchinson. 2003. Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53:223-235. 

  59. Plotner J and R Gunther. 1987. Toxicity of an anionic detergent to the spawn and larvae of anurans (Amphibia). Int. Rev. Ges. Hydrobiol. 72:759-771. 

  60. Presutti C, C Vismara, M Camatini and G Bernardini. 1994. Ecotoxicological effects of a nonionic detergent (Triton DF- 16) assayed by ModFETAX. Bull. Environ. Contam. Toxicol. 53:405-411. 

  61. Reeder AL, GL Foley, DK Nichols, LG Hansen, B Wikoff, S Faeh, J Eisold, MB Wheeler, R Warner, JE Murphy and VR Beasley. 1998. Forms and prevalence of intersexuality and effects of environmental contaminants on exuality in cricket frogs (Acris crepitans). Environ. Health Perspect. 106:261- 266. 

  62. Sellstrㅐm U and B Jansson. 1995. analysis of tetrabromophenol A in a priduct and environmental samples. Chemosphere 31:3085-3092. 

  63. van Wyk JH, EJ Pool and AJ Leslie. 2003. The effects of antiandrogenic and estrogenic disrupting contaminants on breeding gland (nuptial pad) morphology, plasma testosterone levels, and plasma vitellogenin levels in male Xenopus laevis (African clawed frog). Arch. Environ. Contam. Toxicol. 44:247-256. 

  64. Watanabe I, T Kashimoto and R Tatslukawa. 1983. Indetification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka. Bull. Environ. Contam. Toxicol. 31:48-52. 

  65. Wu B, T Ford, JD Gu, XX Zhang, AM Li and SP Cheng. 2010. Computational studies of interactions between endocrine disrupting chemicals and androgen receptor of different vertebrate species. Chemosphere 80:535-541. 

  66. Wu F, S Khan, Q Wu, R Barhoumi, R Burghardt and S Safe. 2008. Ligand structure-dependent activation of estrogen receptor alpha/Sp by estrogens and xenoestrogens. J. Steroid Biochem. Mol. Biol. 110:104-115. 

  67. Yamauchi K, A Ishihara, H Fukazawa and Y Terao. 2003. Competitive interactions of chlorinated phenol compounds with 3,3′,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol. Appl. Pharmacol. 187:110-117. 

  68. Yang FX, Y Xu and S Wen. 2005. Endocrine-disrupting effects of nonylphenol, bisphenol A, and p,p′-DDE on Rana nigromaculata tadpoles. Bull. Environ. Contam. Toxicol. 75: 1168-1175. 

  69. Zhang F, SJ Degitz, GW Holcombe, PA Kosian, J Tietge, N Veldhoen and CC Helbing. 2006. Evaluation of gene expression endpoints in the context of a Xenopus laevis metamorphosis- based bioassay to detect thyroid hormone disruptors. Aquat. Toxicol. 76:24-36. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로