최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.32 no.4, 2011년, pp.305 - 311
김상혁 (경희대학교 생체의공학과) , 서현상 (경희대학교 생체의공학과) , 조영선 (경희대학교 생체의공학과) , 이원희 (컬럼비아대학교 의공학과) , 김태성 (경희대학교 생체의공학과)
For effective stimulation with tDCS, spatial focality of induced electrical field(EF) and current density(CD) is one of the important factors to be considered. Recently, there have been some studies to improve the spatial focality via different types of electrodes and their new configurations: some ...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
M.A. Nitsche, P.S. Boggio, F. Fregni, and A. Pascual-Leone, "Treatment of depression with transcranial direct current stimulation (tDCS): a review," Exp. Neurol., vol. 219, pp. 14-19, 2009.
F.C. Hummel and L.G. Cohen, "Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?," Lancet Neurol., vol. 5, pp. 708-712, 2006.
T. Wagner, F. Fregni, S. Fecteau, A. Grodzinsky, M. Zahn, and A. Pascual-Leone, "Transcranial direct current stimulation: a computer-based human model study," NeuroImage, vol. 35, pp. 1113-1124, 2007.
F. Fregni, P.S. Boggio, M.C. Santos, M. Lima, A.L. Vieira, S.P. Rigonatti, M.T. Silva, E.R. Barbosa, M.A. Nitsche, and A. Pascual-Leone, "Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinsons disease," Movement Disord., vol. 21, pp. 1693-1702, 2006.
F. Fregni, S. Thome-Souza, M.A. Nitsche, S.D. Freedman, K.D. Valente, and A. Pascual-Leone, "A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy," Epilepsia, vol. 47, pp. 335-342, 2006.
M.A. Nitsche and W. Paulus, "Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation," J. Physiol., vol. 527.3, pp. 633-639, 2000.
A. Datta, M. Elwassif, F. Battaglia, and M. Bikson, "Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis," J. Neural Eng., vol. 5, pp. 163-174, 2008.
A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, "Gyri -precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad," Brain Stimulation, vol. 2, pp. 201-207, 2009.
P. Faria, A. Leal, and P.C. Miranda, "Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis," in Proc. 31st Annual International Conference of the IEEE EMBS, Minnesota, USA, Sep. 2009, pp. 1596-1599.
R.N. Holdefer, R. Sadleir, and M.J. Russell, "Predicted current densities in the brain during transcranial electrical stimulation," Clin. Neurophysiol., vol. 117, pp. 1388-1397, 2006.
W.H. Lee, T.-S. Kim, A.T. Kim, and S.Y. Lee, "3-D diffusion tensor MRI anisotropy content-adaptive finite element head model generation for bioelectromagnetic imaging," in Proc. 30st Annual International Conference of the IEEE EMBS, Vancouver, Canada, Aug. 2008, pp. 4003-4006.
S. Kim, T.-S. Kim, Y. Zhou, and M. Singh, "Influence of conductivity tensors on the scalp electrical potential: Study with 2-D finite element models," IEEE Trans. Nucl. Sci., vol. 50, pp. 133-139, 2003.
C.H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M.A. Koch, and R.S. MacLeod, "Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling," NeuroImage, vol. 30, pp. 813-826, 2006.
P.J. Basser, J. Mattiello, and D. LeBihan, "MR diffusion tensor spectroscopy and imaging," Biophys. J., vol. 66, pp. 259-267, 1994.
D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, and J.W. Belliveau, "Conductivity mapping of biological tissue using diffusion MRI," Ann. N.Y. Acad. Sci., vol. 888, pp. 314-316, 1999.
H.S. Suh, S.H. Kim, W.H. Lee, and T.-S. Kim, "Realistic simulation of transcranial direct current stimulation via 3-d high-resolution finite element analysis: Effect of tissue anisotropy," in Proc. 31st Annual International Conference of the IEEE EMBS, Minnesota, USA, Sep. 2009, pp. 638-641.
C.H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M.A. Koch and R.S. MacLeod, "Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling," NeuroImage, vol. 30, pp. 813-826, 2006
A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," J. Neurosci. Meth., vol. 134, pp. 9-21, 2004.
ANSYS. Available: http:// www.ansys.com
J.B. Ranck, "Which elements are excited in electrical stimulation of mammalian central nervous system: a review," Brain Research, vol. 98, pp. 417-440, 1975
R. Plonsey and D.B. Heppner, "Considerations of quasi-stationarity in electrophysiological systems," Bull. Math. Biophys., vol. 29, pp. 657-664, 1967.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.