$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해초에 부착하는 부착생물 군집의 생태학적 특성 - I. 잘피 ($Zostera$ $marina$ L.)의 성장에 따른 부착생물의 군집 변화
Ecological Characteristics of the Epiphytes on Seagrass - I. Variations of the Epiphytic Community and Biomass Related to the Host Plant ($Zostera$ $marina$ (eelgrass) 원문보기

환경생물 = Korean journal of environmental biology, v.29 no.4, 2011년, pp.362 - 372  

정미희 (국립수산과학원 수산해양종합정보과) ,  윤석현 (국립수산과학원 수산해양종합정보과)

초록
AI-Helper 아이콘AI-Helper

본 논문은 잘피의 성장과 부착생물과의 관계, 그리고 부착생물간의 관계를 이해하고자 실시된 연구로서 여수시 돌산읍 율림리에서 1998년 7월에서 1999년 7월까지 총 13개월 동안 실시되었다. 연구 결과를 토대로 다음과 같은 세 가지 결론을 얻을 수 있었다. 1) 잘피 잎의 면적과 부착 생물의 현존량과는 정상관관계를 나타냄으로써 부착가능 면적이 넓어지게 되면 부착생물의 현존량이 증가함을 확인할 수 있었다. 이것은 해초의 외적인 성장이 증가할수록 부착생물이 부착할 수 있는 시간적 가능성이 증가할 뿐만 아니라 부착이 가능한 면적이 확대되는 기회를 제공해 줄 수 있다. 2) 부착생물의 건중량에 대한 무기물량 및 유기물량의 비율과 엽록소 양과의 상관관계를 살펴볼 때, 부착조류의 경우 석회홍조류나 규조류와 같이 무기물의 비율이 높은 조류의 현존량이 녹조류나 갈조류와 같은 조류보다 상대적으로 높은 것으로 나타났다. 3) 독립영양지수 (AI, Autotrophic Index)를 통해 살펴본 부착생물의 군집은 약 2개월의 종속영양군집이후 1개월의 독립영양군집이 나타나는 현상을 보였으나, 독립영양생물을 위주로 한 군집의 유지기간이 짧고 지수의 값이 높은 것을 고려할 때, 유기물질 또는 미생물 등을 위주로 한 종속영양생물의 군집이 우점한다고 유추할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

The relationships among total epiphytes, algal epiphytes and eelgrass ($Zostera$ $marina$ L.) were studied at eelgrass medows from July, 1998 to July, 1999 in Yulim-ri, Yeosu, Korea. Epiphytic diatoms on eelgrass leaves were observed from July to December 1998. From the results...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서, 본 연구에서는 잘피(Zostera marina L.)의 성장과 부착생물 및 부착조류의 관계 그리고 부착 생물간의 군집의 변화에 대해 알아보고자 하였다. 이에 따라 건중량, 유기물량, 잎의 넓이 및 길이 등의 측정을 통해잘피의 성장을 조사하였으며 부착생물은 건중량, 유기물량 그리고 부착조류의 엽록소량(엽록소 a, 엽록소 c, 카 로티노이드), 계수를 통한 부착규조류의 현존량을 측정 하였고, 이들의 상관관계를 분석함으로써 기질과 부착생물, 그리고 부착생물 간의 관계를 이해하고자 하였다.
  • 본 논문에서는 건중량 및 유기물량, 그리고 엽록소 양 등의 현존량을 기준으로 하여 기질인 해초와 부착생물, 그리고 부착조류와 기타 부착생물간의 관계를 알아보고자 하였다. 그러나 이들의 관계는 서식하고 있는 수환경과도 밀접한 관계를 가지고 있으며, 특히 수괴의 영양염 및 염분, 온도 등에 의해 부착생물의 현존량은 크게 달라질 수 있다(Penhale and Thayer 1980; Smith and Penhale 1980).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
초지가 분포하는 연안역은 어떤 역할을 하는가? 해초생태계는 세계 연안역에 가장 일반적인 생태계 중 하나이다. 특히, 초지가 분포하는 연안역은 중요한 어류의 생육장으로서 자리하고 있을 뿐만 아니라 기초생산자로서의 중요한 역할 이외에도 다양한 부착조류의 착생(着生) 장소를 제공하고 파랑을 약화시켜 안정된 환경을 만 들고, 퇴적물의 축적을 돕고, 강한 빛을 막아주며, 또한 많은 동물들의 은신처 역할을 하고 있다(Nybakken 1982).
부착생물의 계절적, 지역적 분포를 결정할 수 있는 요인은 어떤 것이 있는가? 이 생태계를 구성하는 요소 중 하나인 부착생물의 계절적, 지역적 분포를 결정할 수 있는 요인은 온도, 빛의 양 (Hellebust 1970), 영양염류의 이용성(Penhale and Thayer 1980; Smith and Penhale 1980)과 같은 환경요인과의 관계, 그리고 부착생물에 대한 포식(grazing)강도(Orth and van Montfrans 1984), 기질이 되는 해초의 종별 특성(정등 2010) 등의 생물학적 관계이다.
잘피의 성장과 부착생물과의 관계, 그리고 부착생물간의 관계를 이해하고자 실시한 본 연구의 결론은 무엇인가? 연구 결과를 토대로 다음과 같은 세 가지 결론을 얻을 수 있었다. 1) 잘피 잎의 면적과 부착 생물의 현존량과는 정상관관계를 나타냄으로써 부착가능 면적이 넓어지게 되면 부착생물의 현존량이 증가함을 확인할 수 있었다. 이것은 해초의 외적인 성장이 증가할수록 부착생물이 부착할 수 있는 시간적 가능성이 증가할 뿐만 아니라 부착이 가능한 면적이 확대되는 기회를 제공해 줄 수 있다. 2) 부착생물의 건중량에 대한 무기물량 및 유기물량의 비율과 엽록소 양과의 상관관계를 살펴볼 때, 부착조류의 경우 석회홍조류나 규조류와 같이 무기물의 비율이 높은 조류의 현존량이 녹조류나 갈조류와 같은 조류보다 상대적으로 높은 것으로 나타났다. 3) 독립영양지수 (AI, Autotrophic Index)를 통해 살펴본 부착생물의 군집은 약 2개월의 종속영양군 집이후 1개월의 독립영양군집이 나타나는 현상을 보였으나, 독립영양생물을 위주로 한 군집의 유지기간이 짧고 지수의 값이 높은 것을 고려할 때, 유기물질 또는 미생물 등을 위주로 한 종속영양생물의 군집이 우점한다고 유추할 수 있었다.
질의응답 정보가 도움이 되었나요?

참고문헌 (37)

  1. 정미희. 2003. 해초부착규조의 생태 및 분류학적 연구. 한양대학교 이학박사학위논문. 150pp. 

  2. 정미희, 윤석현, 윤원득. 2010. Zostera속 해초에 부착하는 규조류의 부착 특성과 해초 종별 군집 변화. 한국해양학회지-바다. 15:184-191. 

  3. 허성회, 곽석남. 1998. 광양만 잘피밭에 서식하는 줄망둑(Asentrogobius pflanumii)의 식성. 한국어류학회지. 10:24-31. 

  4. 허성회, 곽석남, 남기완. 1998. 광양만 잘피와 착생해조류의 계절 변동. 한국수산학회지. 31:56-62. 

  5. 허성회, 안용락. 1998. 광양만 잘피밭에 서식하는 게류 군집의 계절변동. 한국수산학회지. 31:535-544. 

  6. APHA-AWWA-WPCF. 1995. Standard method of the examination of water and waste water. 19th. Washington, D. C. 

  7. Azim ME, MA Wahab, AA van Dam, MCM Beveridge, A Milstein and MC Verdegem. 2001. Optimization of fertilization rate for maximizing periphyton production on artificial substrates and the implications for periphyton-based aquaculture. Aquaculture Res. 32:749-760. 

  8. Bendell BE. 2006. Interactions amongst invertebrates, epiphytes, and seagrasses in tropical intertidal meadows. Ph. D thesis. James Cook University. 231pp. 

  9. Boisson JC and Y Perrodin. 2006. Effects of road runoff on biomass and metabolic activity of periphyton in experimental streams. Journal of Hazardoum Materials. A132:148-154. 

  10. Borowitzka MA and RC Lethbridge. 1989. Seagrass epiphytes. pp. 458-499. In Biology of seagrasses-A treatise on the biology of seagrasses with special reference to the Australian region (Larkum AWD, AJ McComb and SA Shepherd eds.). Elsevier. Netherlands. 

  11. Chung MH and CI Choi. 1999. Epipphytic diatom community on eelgrass (Zostera marina L.). J. Natural Science and Technology. Hanyang Univ. 1:145-149. 

  12. Chung MH and KS Lee. 2008. Species composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae. 23:75-81. 

  13. Chung MH, WD Youn and JB Lee. 2010. Morphological description of Cyclotella atomus var. marina (Bacillariophyceae): newly reported in Korean waters. Algae. 25:57-64. 

  14. Frankovich TA and JC Zieman. 1994. Total epiphye and epiphytic carbonate production on Thalassia testudinum across Florida Bay. Bull. Mar. Sci. 54:679-695. 

  15. Frankovich TA and JW Fourqurean. 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar. Ecol. Prog. Ser. 159:37-50. 

  16. Harlin MM. 1980. Seagrass epiphytes. pp. 117-151. In Handbook of Seagrass Biology: An Ecosystem Perspective (Phillips RC and CP McRoy eds). STPM press. New York. 

  17. Hellebust JA. 1970. Light; Plants. pp. 125-158. In Marine Ecology (Kinne O. ed.). Wiley-Interscience. New York. 

  18. Johansen HW. 1981. Coralline algae, a first synthesis. CRC press. Boca Raton. 

  19. Kwak SN. 2009. Seasonal variations in species composition and biomass of epiphytic algal community in an eelgrass (Zostera marina). Journal of the Korean Society of Marine Environment & Safety. 15:173-177. 

  20. Lei Zheng. 2006. Algae. pp. 1-21. In Concepts and approaches for the bioassessment of non-wadeable streams and rivers (Flotemersch JE, JB Stribling and MJ Paul eds.). EPA. Washington. 

  21. Michael TS, HW Shin, R Hanna and DC Spafford. 2008. A review of epiphyte community development: Surface interactions and settlement on seagrass. J. Environ. Biol. 29:629-638. 

  22. Miki S. 1932. On seagrass new to Japan, Bot. Mar. 46:774-788. 

  23. Miki S. 1933. On the seagrass in Japan. ( I ) Zostera and Phyllospadix, with special reference to morphological and ecological characters. Bot. Mar. 47:842-862. 

  24. Nybakken JW. 1982. Marine biology: an ecological approach. Harpper & Row Publ. New York. 

  25. Oh MH, DW Kang, TH Kim, YH Moon, BY Moon, IK Chung and CH Lee. 2009. Effects of epiphytic load on the photosynthetic performane of a seagrass, Zostera marina, Monitored in vivo by chlorophyll fluorescence imaging. J. Plant Biol. 52:171-175. 

  26. Orth RJ and J van Montfrans. 1984. Epiphyte-eelgrass relationships with an emphasis on the role of micrograzing: A review. Aquat. Bot. 18:43-69. 

  27. Parsons TR, M Yoshiaki and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. Oxford. 

  28. Penhale PA and GW Thayer. 1980. Uptake and transfer of carbon and phosphorus by eelgrass (Zostera marina L.) and its epiphytes. J. Exp. Mar. Biol. Ecol. 42:113-123. 

  29. Peterson BJ, TA Frakovich and JC Zieman. 2007. Response of seagrass epiphyte loading to field manipulations of fertilization, gastropod grazing and leaf turnover rates. J. Exp. Mar. Biol. Ecol. 349:61-72. 

  30. Pinckney JL and F Micheli. 1998. Microalgae on seagrass mimics: Does epiphyte community structure differ from live seagrasses?. J. Exp. Mar. Biol. Ecol., 221:59-70. 

  31. Pizarro H and A Vinocur. 2000. Epilithic biomass in an outflow stream at Potter Peninsula, King George Island, Antarctica. Polar Biol. 23:851-857. 

  32. Pizarro H, A Vinocur and G Tell. 2002. Periphyton on artificial substrata from three lakes of different trophic status at Hope Bay (Antarctica). Polar Biol. 25:169-179. 

  33. Round FE, RM Crawford and DG Mann. 1990. The diatoms : Biology & morphology of the genera. Cambridge University press. Cambridge. 

  34. Smith WO and PA Penhale. 1980. The heterotrophic uptake of dissolved organic carbon by eelgrass (Zostera marina L.) and its epiphytes. J. Exp. Mar. Biol. Ecol. 48:233-242. 

  35. Trautman DA and MA Borowitzka. 1999. Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar. Ecol. Prog. Ser. 179:215-229. 

  36. Weber CI. 1973. Biological monitoring of the aquatic environment. pp. 46-60. In Biological methods for the assessment of water quality (Cairns JJr and KL Dickson eds.). American Society for Testing and Materials. Philadelphia. USA. 

  37. Woelkerling W. 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. British Museum (Natural History) and Oxford University press. London. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로