최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한산업공학회지 = Journal of the Korean Institute of Industrial Engineers, v.37 no.3, 2011년, pp.191 - 197
The group Steiner tree problem is a generalization of the Steiner tree problem that is defined as follows. Given a weighted graph with a family of subsets of nodes, called groups, the problem is to find a minimum weighted tree that contains at least one node in each group. We present some existing a...
Chekuri, C., Even, G. and Kortsarz, G. (2006), A greedy approximation algorithm for the group Steiner tree problem, Discrete Applied Mathematics, 154, 15-34.
Dror, M., Houari, M. and Chaouachi, J. (2000), Generalized spanning trees, European Journal of Operational Research, 120, 583-592.
Duin, C. W., Volgenant, A. and Voss, S. (2004), Solving group Steiner tree problems as Steiner problems, European Journal of Operational Research, 154, 323-329.
Feremans, C., Labbe, M., and Laporte, G. (2001), On generalized minimum spanning tree problem, European Journal of Operational Research, 134, 457-458.
Feremans, C., Labbe, M., and Laporte, G. (2002), A comparative analysis of several formulations for the generalized minimum spanning tree problem, Networks, 39, 29-34.
Ferreira, C. E., Filho, F. M., and de Oliveria (2006), Some formulations for the group Steiner tree problem, Discrete Applied Mathematics, 154, 1877-1884.
Garg, N., Konjevod, G., and Ravi, R. (2000), A polylogarithmic approximation algorithm for the group Steiner tree problem, Journal of Algorithm, 37, 66-84.
Goemans, M. X. (1994), The Steiner tree polytope and related polyhedra, Mathematical Programming, 63, 157-182.
Goemans, M. X. and Myung, Y.-S. (1993), A catalog of Steiner tree formulations, Networks, 23, 19-28.
Golden, B., Raghavan, S., and Stanojevic, D. (2005), Heuristic search for the generalized minimum spanning tree problem, INFORMS Journal on Computing, 17, 290-304.
Houari, M. and Chaouachi, J. S. (2006), Upper and lower bounding strategies for the generalized spanning tree problem, European Journal of Operational Research, 171, 632-647.
Ihler, E., Reich, P., and Widmayer, G. (1999), Class Steiner trees and VLSI-design, Discrete Applied Mathematics, 154, 173-194.
Myung, Y.-S. (2007), A note on some formulations for the group Steiner tree problem, Working paper, Dankook Univ.
Myung, Y.-S., Lee, C. H., and Tcha, D.W. (1995), On the generalized minimum spanning tree problem, Networks, 26, 231-241.
Polzin, T. and Daneshmand, S. V. (2001), A comparison of Steiner tree relaxaions, Discrete Applied Mathematics, 112, 241-261.
Pop, P. C., Kern, W., and Still, G. (2006), A new relaxation method for the generalized minimum spanning tree problem, European Journal of Operational Research, 170, 900-908.
Reich, G. and Widmayer, P. (1990), Beyond Steiner?s problems : a VLSI oriented generalization, Proceedings of Graph-Theoretic Concepts in Computer Science (WG-89), Lecture Notes in Computer Science, 411, Springer, Berlin, 196-210.
Salazar, J. J. (2000), A note on the generalized Steiner tree polytope, Discrete Applied Mathematics, 100, 137-144.
Wang, Z., Che, C. H., and Lim, A. (2006), Tabu Search for Generalized Minimum Spanning Tree Problem, Lecture Notes in Computer Science, 4099, Springer, Berlin.
Yang, B. and Gillard, P. (2000), The class Steiner minimal tree problem : a lower bound and test problem generation, Acta Informatica, 37, 193-211.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.