$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

주요우울증에서 스트레스, 염증반응, 신경조직발생
Stress, Inflammation and Neurogenesis in Major Depression 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.18 no.4, 2011년, pp.169 - 175  

김용구 (고려대학교 의과대학 정신과학교실)

Abstract AI-Helper 아이콘AI-Helper

Stress, a risk factor of major depression induces cytokine mediated inflammation and decreased neurogenesis. In patients with major depression, significant increases of pro-inflammatory cytokines have been consistently reported. The pro-inflammatory cytokines can stimulate the hypothalamic-pituitary...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 종설에서는 우울증에서 면역계, 중추신경계, 신경내분비계, 신경전달물질계 간의 상호작용이 병태생리에 미치는 영향을 알아보고, 특히 면역계의 사이토카인이 신경조직발생에 어떤 역할을 하고 있는지 재고해보고자 한다.

가설 설정

  • 8) 우울증이 바로 환경적 스트레스와 유전적 소인 간의 상호작용으로 발생되는 질환 중에 하나다.9) 우울증의 원인을 신경화학적 이상에서 찾으려고 했지만, 우울증은 뇌의 구조가소성의 손상에 기인된다는 사실이 밝혀져 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
현재의 항우울제들은 임상적 반응이 나타나기까지 2주에서 4주 정도의 시간이 필요한 이유는 무엇인가? 74) 더욱이, 현재의 항우울제들은 임상적 반응이 나타나기까지 2주에서 4주 정도의 시간이 필요했다.75) 그 이유는 항우울제는 시냅스 수준의 신경전달물질의 농도의 변동이나 수용체 변화를 넘어 세포 내 신호 전달 경로를 활성화시켜 해마와 대뇌 피질을 포함하는 특정 뇌 부위의 특정한 표적 유전자를 조절하여 세포 단백질을 형성하기까지 일정한 시간이 소요되기 때문이다. 따라서 이러한 결과들은 우울증이 결코 신경전달물질계의 개선만으로는 근본적인 치료가 될 수 없음을 시사하는 것이다.
멜랑콜리아는 무엇을 뜻하는가? 주요우울증(major depression)은 수천 년 전부터 인류와 함께 존재하여 온 질환이다. 우울증을 뜻하는 멜랑콜리아(melancholia)는 그리스어로 검은 담즙(black bile)이란 의미로, 기원전 400년에 히포크라테스에 의해 처음 사용되었다. 현재 우리가 알고 있는 우울증의 대부분의 주된 증상들은 이미 고대부터 인식되었고, 그 당시부터 우울증이 내적 소인과 외적 인자들의 영향 때문이라는 것도 알게 되었다.
만성적 스트레스는 어떻게 신경변성과 우울증상을 초래하게 되는가? 1은 스트레스로 인한 사이토카인으로 매개되는 염증이 신경조직발생을 저하시켜 우울증을 유발하는 가능한 경로를 제시한 것이다. 만성적 스트레스는 면역계의 불균형 상태를 초래하여 말초면역계와 뇌의 소교세포, 성상세포를 활성화하여 말초와 뇌에서 사이토카인의 분비를 촉진하게 되고 이로 인해 시상하부-뇌하수체-부신피질 축이 활성화되어 당질코르티코이드가 분비되며, 뇌에서 분비된 사이토카인은 해마의 신경조직발생을 억제하게 되고 이로 인해 신경변성과 우울증상이 초래하게 된다. 그러나 현재까지도 신경조직발생의 저하는 인지기능의 손상을 초래하는 것으로 보이며, 우울증의 다른 증상에도 관여하는지는 현재로서는 확실하진 않다.
질의응답 정보가 도움이 되었나요?

참고문헌 (84)

  1. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 2001;49:1023-1039. 

  2. Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders Biol Psychiatry 1999;46:1509-1522. 

  3. Schildkraut JJ. The catecholamine hypothesis of affective disorders:a review of supporting evidence. Am J Psychiatry 1965;122:509-522. 

  4. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997;54:597-606. 

  5. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO & NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 2008;29: 287-291. 

  6. Leonard BE. The immune system, depression and the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:767-780. 

  7. Leonard BE. The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 2005;20 Suppl 3:S302- S306. 

  8. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005;6:463-475. 

  9. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003;301:386-389. 

  10. Castren E. Is mood chemistry? Nat Rev Neurosci 2005;6:241-246. 

  11. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2007;10:1116-1124. 

  12. Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4:141-194. 

  13. Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 2001;178:200-206. 

  14. Sheline YI. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 2000;48:791-800. 

  15. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 100:1387-1392. 

  16. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000;57:925-935. 

  17. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004;56:640-650. 

  18. Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 2001;158:453-468. 

  19. Czeh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 2007;257:250-260. 

  20. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313-1317. 

  21. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435: 406-417. 

  22. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386: 493-495. 

  23. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science 1999;286:548-552. 

  24. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 1998;95:3168-3171. 

  25. Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci 1999;2:894-897. 

  26. Muller N. [Role of the cytokine network in the CNS and psychiatric disorders]. Nervenarzt 1997;68:11-20. 

  27. Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999;4:317-327. 

  28. Maes M, Smith R, Scharpe S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995;20:111-116. 

  29. Connor TJ, Leonard BE. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 1998; 62:583-606. 

  30. Kim YK, Suh IB, Kim H, Han CS, Lim CS, Choi SH, et al. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol Psychiatry 2002; 7:1107-1114. 

  31. Pollak Y, Yirmiya R. Cytokine-induced changes in mood and behaviour: implications for 'depression due to a general medical condition', immunotherapy and antidepressive treatment. Int J Neuropsychopharmacol 2002;5:389-399. 

  32. Smith RS. The macrophage theory of depression. Med Hypotheses 1991;35:298-306. 

  33. Maes M. Major depression and activation of the inflammatory response system. Adv Exp Med Biol 1999;461:25-46. 

  34. Myint AM, Kim YK. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 2003;61:519-525 

  35. Meyers CA. Mood and cognitive disorders in cancer patients receiving cytokine therapy. Adv Exp Med Biol 1999;461:75-81. 

  36. Dantzer R, Aubert A, Bluthe RM, Gheusi G, Cremona S, Laye S, et al. Mechanisms of the behavioural effects of cytokines. Adv Exp Med Biol 1999;461:83-105. 

  37. Leonard BE. Changes in the immune system in depression and dementia: causal or co-incidental effects? Int J Dev Neurosci 2001;19: 305-312. 

  38. Kim YK, Lee SW, Kim SH, Shim SH, Han SW, Choi SH, et al. Differences in cytokines between non-suicidal patients and suicidal patients in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:356-361. 

  39. Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:1044-1053. 

  40. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord 2005; 88:167-173. 

  41. Lee KM, Kim YK. The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 2006; 6:1298-1304. 

  42. Leonard BE. HPA and immune axes in stress: involvement of the serotonergic system. Neuroimmunomodulation 2006;13:268-276. 

  43. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987;238:522-524. 

  44. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H. Corticotropin- releasing factor-producing neurons in the rat activated by interleukin-1. Science 1987;238:524-526. 

  45. Maes M, Scharpe S, Meltzer HY, Bosmans E, Suy E, Calabrese J, Cosyns P. Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 1993;49:11-27. 

  46. Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, et al. IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interferon Cytokine Res 2001;21:1097-1101. 

  47. Sakash JB, Byrne GI, Lichtman A, Libby P. Cytokines induce indoleamine 2,3-dioxygenase expression in human atheroma-asociated cells: implications for persistent Chlamydophila pneumoniae infection. Infect Immun 2002;70:3959-3961. 

  48. Neveu PJ, Castanon N. Is there evidence for an effect of antidepressant drugs on immune function? Adv Exp Med Biol 1999;461:267- 281. 

  49. Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 1999;20:370-379. 

  50. Xia Z, DePierre JW, Nassberger L. Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology 1996;34:27-37. 

  51. Suzuki E, Shintani F, Kanba S, Asai M, Nakaki T. Induction of interleukin- 1 beta and interleukin-1 receptor antagonist mRNA by chronic treatment with various psychotropics in widespread area of rat brain. Neurosci Lett 1996;215:201-204. 

  52. Nabriski D, Saperstein A, Brand H, Jain R, Zwickler D, Hutchinson B, et al. Role of corticotropin-releasing factor in immunosuppression. Trans Assoc Am Physicians 1991;104:238-247. 

  53. Miller AH, Pariante CM, Pearce BD. Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Adv Exp Med Biol 1999;461:107-116. 

  54. Kim YK, Maes M. The role of cytokine network in psychological stress. Acta Neuropsychiatrica 2003;15:148-155. 

  55. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009;158:1021- 1029. 

  56. Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H, et al. Suppression of cell proliferation by interferon-alpha through interleukin- 1 production in adult rat dentate gyrus. Neuropsychopharmacology 2006;31:2619-2626. 

  57. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006;26:9703-9712. 

  58. Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 2008;105:751-756. 

  59. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302:1760-1765. 

  60. Duman RS. Depression: a case of neuronal life and death? Biol Psychiatry 2004;56:140-145. 

  61. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20:9104-9110. 

  62. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001;98: 12796-12801. 

  63. Oomen CA, Mayer JL, de Kloet ER, Joels M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci 2007;26:3395-3401. 

  64. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805-809. 

  65. Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16:239-249. 

  66. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci 2007;10:1110-1115. 

  67. Kempermann G, Krebs J, Fabel K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 2008;21:290-295. 

  68. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 2009;14:959-967. 

  69. Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? Genes Brain Behav 2008;7 Suppl 1:28-42. 

  70. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 2006;11:514-522. 

  71. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009;34:2376- 2389. 

  72. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008;64:293-301. 

  73. Lanni C, Govoni S, Lucchelli A, Boselli C. Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 2009; 66:2985-3008. 

  74. Thase ME. The clinical, psychosocial, and pharmacoeconomic ramifications of remission. Am J Manag Care 2001;7:S377-S385. 

  75. Duman RS. Synaptic plasticity and mood disorders. Mol Psychiatry 2002;7 Supp 1:S29-S34. 

  76. Pollak DD, Monje FJ, Zuckerman L, Denny CA, Drew MR, Kandel ER. An animal model of a behavioral intervention for depression. Neuron 2008;60:149-161. 

  77. Czeh B, Pudovkina O, van der Hart MG, Simon M, Heilbronner U, Michaelis T, et al. Examining SLV-323, a novel NK1 receptor antagonist, in a chronic psychosocial stress model for depression. Psychopharmacology (Berl) 2005;180:548-557. 

  78. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 2008;108:132-138. 

  79. Revesz D, Tjernstrom M, Ben-Menachem E, Thorlin T. Effects of vagus nerve stimulation on rat hippocampal progenitor proliferation. Exp Neurol 2008;214:259-265. 

  80. Maier SF, Watkins LR. Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Res 1995;695:279-282. 

  81. Mansbach RS, Brooks EN, Chen YL. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 1997;323:21-26. 

  82. Myint AM, Steinbusch HW, Goeghegan L, Luchtman D, Kim YK, Leonard BE. Effect of the COX-2 inhibitor celecoxib on behavioural and immune changes in an olfactory bulbectomised rat model of depression. Neuroimmunomodulation 2007;14:65-71. 

  83. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein- Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006;11:680-684. 

  84. Bauer J, Hohagen F, Gimmel E, Bruns F, Lis S, Krieger S, et al. Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biol Psychiatry 1995;38:611-621. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로