$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가
Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana 원문보기

생명과학회지 = Journal of life science, v.22 no.11 = no.151, 2012년, pp.1515 - 1522  

박훤범 (수원대학교 생명공학과)

초록
AI-Helper 아이콘AI-Helper

식물호르몬인 abscisic acid (ABA)는 식물의 비생물학적 스트레스의 적응과정에서 중요한 역할을 수행하고 있다. 또한 ABA는 종자휴면, 발아, 세포분열의 저해, 기공개폐와 같은 중요한 과정에 관여하고 있다. OsABF2(Oryza sativa ABRE Binding Factor2)는 벼에서 비생물학적 스트레스와 ABA 신호전달 과정에 양성적으로 관여하는 bZIP 형태의 전사인자이다. OsABF2 유전자의 발현은 ABA와 다양한 스트레스 처리에 의해 유도된다. 본 논문에서는 OsABF2 유전자를 과발현한 애기장대가 가뭄, 고염, 고온 상태에서의 생존율이 야생형보다 증가하는 것을 확인하였다. 또한 ABA가 존재하는 상황에서 OsABF2 유전자를 과발현한 애기장대의 발아율이 감소하는 것을 확인하였다. 이러한 결과로 미루어 OsABF2 유전자를 과발현한 애기장대는 비생물학적 스트레스에 대한 내성이 증가하고 ABA 감수성은 증가하는 것으로 확인되었다.

Abstract AI-Helper 아이콘AI-Helper

The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 최근 연구에서 OsABF1과 OsABF2 유전자의 발현이 각종 비생물학적 스트레스 상황에서 증가하는 것을 확인하였고, T-DNA가 삽입되어 유전자의 기능이 상실된 Osabf1과 Osabf2돌연변이체에 각종 비생물학적 스트레스를 처리하여 표현형을 관찰한 결과, 두 유전자는 벼에서 스트레스에 대한 내성 증가와 ABA 신호전달 과정에서 중요한 역할을 한다는 것이 밝혀졌다[16,17]. 본 연구에서는 단자엽 식물의 모델 식물인 벼에 존재하는 bZIP 전자인자인 OsABF2가 스트레스 상황에서 갖는 기능이 다른 종에서도 유효한지를 확인하기 위하여, 쌍자엽식물의 모델 식물인 애기장대에 OsABF2유전자를 Agrobacterium의 binary vector system을 이용하여 삽입시킨후 homozygous line을 선별하고, 가뭄/염분/고온 스트레스를 처리하고 야생형과 생존율을 비교하여 내성을 측정하였다. 또한 종자의 발아 단계에서 ABA에 대한 sensitivity를 측정하기 위하여 OsABF2 형질전환체와 야생형 애기장대의 종자를 ABA가 포함 된 배지에 치상하여 발아율을 측정하였다.
  • 이러한 결과로 OsABF2는 비생물학적 스트레스와 ABA 신호전달과정에 양성조절자 (positive regulator)로 작용한다는 사실이 확인되었다. 본 연구에서는 벼에서 확인된 OsABF2가 스트레스 상황에서 쌍자 엽식물의 model plant인 애기장대에서도 작용하는 지를 확인 하기 위하여 OsABF2 유전자가 과발현된 애기장대 형질전환 체를 제작한 후 스트레스에 대한 내성과 ABA에 대한 감수성을 확인하였다. 그 결과 가뭄, 고염, 고온 스트레스 상황에서의내성이 현저하게 증가되는 것이 확인되었고 발아단계에서 ABA 감수성은 증가되는 것으로 확인되었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
OsABF2란 무엇인가? 또한 ABA는 종자휴면, 발아, 세포분열의 저해, 기공개폐와 같은 중요한 과정에 관여하고 있다. OsABF2(Oryza sativa ABRE Binding Factor2)는 벼에서 비생물학적 스트레스와 ABA 신호전달 과정에 양성적으로 관여하는 bZIP 형태의 전사인자이다. OsABF2 유전자의 발현은 ABA와 다양한 스트레스 처리에 의해 유도된다.
식물의 ABA는 생명활동 중 어떤 과정에 관여하고 있는가? 식물호르몬인 abscisic acid (ABA)는 식물의 비생물학적 스트레스의 적응과정에서 중요한 역할을 수행하고 있다. 또한 ABA는 종자휴면, 발아, 세포분열의 저해, 기공개폐와 같은 중요한 과정에 관여하고 있다. OsABF2(Oryza sativa ABRE Binding Factor2)는 벼에서 비생물학적 스트레스와 ABA 신호전달 과정에 양성적으로 관여하는 bZIP 형태의 전사인자이다.
식물이 받을 수 있는 스트레스는 크게 생물학적 스트레스와 비생물학적 스트레스 두 가지로 나눌 수 있는데, 각각의 스트레스를 주는 요인은 무엇이 있는가? 식물이 받을 수 있는 스트레스는 크게 생물학적 스트레스와 비생물학적 스트레스 두 가지로 나눌 수 있다. 생물학적 스트레스는 다른 생명체에 의한 스트레스를 말하며, 그 이외의 가뭄(drought), 염분(salinity), 고온(heat), 저온(cold), 과다한 빛(excess light), 중금속(heavy metal), 오존(ozone), UV (ultra-violet radiation), 저산소(hypoxia), 영양소 결핍 (nutrient deficiency) 등이 비생물학적 스트레스의 요인으로 언급이 되고 있다[3,29,30]. 특히, 가뭄이나 염분에 의한 스트레스는 식물에 삼투 스트레스(osmotic stress)로 작용하는데 이는 식물의 생장과 발달에 영향을 주어 작물의 경우에는 생산성에 큰 영향을 미친다[2,47].
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell 9, 1859-1868. 

  2. Adams, P., Thomas, J. C., Vernon, D. M., Bohnert, H. J. and Jensen, R. G. 1992.Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33, 1215-1223. 

  3. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. 

  4. Busk, P. K. and Pages, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425-435. 

  5. Cao, X., Costa, L. M., Biderre-Petit, C., Kbhaya, B., Dey, N., Perez, P., McCarty, D. R., Gutierrez-Marcos, J. F. and Becraft, P. W. 2007.Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol. 143, 720-731. 

  6. Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgern, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps,J. A., Harper, J. F., Heinlein, M., Kobayashi, K., Hohn, T., Dang, J. L., Wang, X. and Zhu, T. 2002. Expression profile matrix of Arabidopsistranscription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559-574. 

  7. Chen, W. and Zhu, T. 2004. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 9, 591-596. 

  8. Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. 2000. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723-1730. 

  9. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735-743. 

  10. Dickinson, C. D., Evans, R. P. and Nielsen, N. C. 1988. RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes. Nucleic Acids Res. 16, 371. 

  11. Fujita, Y., Fujita, M., Satoh, R., Maruyama,K., Parvez, M. M., Seki, M., Hiratsu, K.,Ohme-Takagi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABAsignaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488. 

  12. Gilmour, S. J. and Thomashow, M. F. 1991. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol. 17, 1233-1240. 

  13. Giraud, E., Ho, L. H. M., Clifton, R., Carroll,A., Estavillo, G., Tan, Y. F., Howell, K. A.,Ivanova, A., Pogson, B. J., Millar, A. H. and Whelan, J. 2008. The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147, 595-610. 

  14. Giuliano, G., Pichersky, E., Malik, V. S., Timko, M. P., Scolnik, P. A. and Cashmore, A. R. 1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA 85, 7089-7093. 

  15. Guiltinan, M. J., Marcotte, W. R. and Quatrano, R. S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271. 

  16. Hossain, M. A., Lee, Y., Cho, J. I., Ahn, C. H., Lee, S. K., Jeon, J. S., Kang, H., Lee, C. H., An, G. and Park, P. B. 2010a. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol. Biol. 72, 557-566. 

  17. Hossain, M. A., Cho, J. I., Han, M., Ahn, C. H., Jeon, J. S., An, G. and Park, P. B. 2010b. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J. Plant Physiol. 167, 1512-1520. 

  18. Huang, X. S., Liu, J. H. and Chen, X. J. 2010. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol. 10, 230. 

  19. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedermann, J., Kroj, T. and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111. 

  20. Karakas, B., Ozias-Akins, P., Stushnoff, C., Suefferheld, M. and Rieger, M. 1997. Salinity and drought tolerance of mannitol- accumulating transgenic tobacco. Plant Cell Environ. 20, 609-616. 

  21. Kim, J. B., Kang, J. Y. and Kim, S. Y. 2004. Over-expression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerance. Plant Biotech. J. 2, 459-466. 

  22. Kim, S. Y., Chung, H. J. and Thomas, T. L. 1997. Isolation of a novel class of bZIP transcription factorthat interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11, 1237-1251. 

  23. Kim, S. Y. 2007. Recent advances in ABA signaling. J. Plant Biol. 50, 117-121. 

  24. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199-222. 

  25. Lu, G., Gao, C., Zhong, X. and Han, B. 2008. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605-615. 

  26. Mantyla, E., Lang, V. and Palva, E. T. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LTI78 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107, 141-148. 

  27. McCarty, D. R., Carson, C. B., Stinard, P. S. and Robertson, D. S. 1989. Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1, 523-532. 

  28. Ming, C., Zhaoshi, X., Lanqin, X., Liancheng, L., Xianguo, C., Jianhui, D., Qiaoyan, W. and Youzhi, M. 2009. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine maxL.). J. Exp. Bot. 60, 121-135. 

  29. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19. 

  30. Moller, I. M., Jensen, P. E. and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459-481. 

  31. Navrot, N., Rouhier, N., Gelhaye, E. and Jacquot, J. P. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant 129, 185-195. 

  32. Neill, S. J., Horgan, R. and Rees, A. F. 1987. Seed development and vivirary in Zea mays L. Planta 171, 358-364. 

  33. Nijhawan, A., Jain, M., Tyagi, A. K. and Khurana, J. P. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146, 333-350. 

  34. Niu, X., Renshaw-Gegg, L., Miller, L. and Guiltinan, M. J. 1999. Bipartite determinants of DNA binding specificity of plant basic leucine zipper proteins. Plant Mol. Biol. 41, 1-13. 

  35. Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., Yshiwara, K., Seki, M., Shnozaki, K. and Yamaguchi-Shinozaki, K. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767. 

  36. Robichaud, C. S., Wong, J. and Sussex, I. M. 1980. Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev. Genet. 1, 325-330. 

  37. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A.,Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, K., Yamaguchi-Shinozaki, K.,Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsisgenes under drought, cold and high-salinity stresses using a full length cDNA microarray. Plant J. 31 279-292. 

  38. Shen, Q. and Ho, T. H. D. 1995. Functional dissection of an abscisic acid (ABA) inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307. 

  39. Shen, Q., Zhang, P. and Ho, T. H. D. 1996. Modular nature of abscisic acid (ABA) response complexes: Composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107-1119. 

  40. Singh, K. B. 1998. Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol. 118, 1111-1120. 

  41. Todaka, D., Nakashima, K., Shinozaki, K. and Yamakuchi- Shinozaki, K. 2012. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5, 6-9. 

  42. Tran, L. S., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S. D., Maruyama, K., Fujita, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2006. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J. 49, 46-63. 

  43. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97, 11632- 11637. 

  44. Wise, A. A., Liu, Z. Y. and Binns, A. N. 2006. Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol. Biol. 343, 43-53. 

  45. Xiang, Y., Tang, N., Du, H., Ye, H. and Xiong, L. 2008. Characterization of OsbZIP23 as a key player of basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148, 1938-1952. 

  46. Yamaguchi-Shinozaki, K. and Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic and coldstress- responsive promoters. Trends Plant Sci. 10, 88-94. 

  47. Yancey, P. H., Clark, M. E., Hand, S. C.,Bowlus, R. D. and Somero, G. N. 1982. Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222. 

  48. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. andYamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685. 

  49. Zeevaart, J. A. and Creelman, R. A. 1988.Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로