$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Together with protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs) serve as hallmarks in cellular signal transduction by controlling the reversible phosphorylation of their substrates. The human genome is estimated to encode more than 100 PTPs, which can be divided into eleven sub-g...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • As the structural information of the entitre sub-group of PTPs including eyes absent are available now, it is the right time to present a comprehensive review of the structure and mechanism of PTPome in terms of the three-dimensional structure. In this short review, we discuss a comparative analysis of our understanding of the catalytic domain of PTP structures and their mechanism.

가설 설정

  • The active site aspartate and magnesium ion are drawn as ball-and-stick models. (B) Catalytic mechanism of eyes absent. A proposed two-step catalytic mechanism for eyes absent is shown.
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. 1 Graves J. D. Krebs E. G. Protein phosphorylation and signal transduction. Pharmacol. Ther. (1999) 82 111 121 10.1016/S0163-7258(98)00056-4 10454190 

  2. 2 Easty D. Gallagher W. Bennett D. C. Protein tyrosine phosphatases, new targets for cancer therapy. Curr. Cancer Drug Targets (2006) 6 519 532 10.2174/156800906778194603 17017875 

  3. 3 Mustelin T. Feng G.-S. Bottini N. Alonso A. Kholod N. Birle D. Merlo J. Huynh H. Protein tyrosine phosphatases. Front. Biosci. (2002) 7 85 142 10.2741/mustelin 

  4. 4 Olsen J. V. Blagoev B. Gnad F. Macek B. Kumar C. Mortensen P. Mann M. Global, in vivo and site-specific phosphorylation dynamics in signaling networks. Cell (2006) 127 635 648 10.1016/j.cell.2006.09.026 17081983 

  5. 5 Alonso A. Sasin J. Bottini N. Friedberg I. Friedberg I. Osterman A. Godzik A. Hunter T. Dixon J. Mustelin T. Protein tyrosine phosphatases in the human genome. Cell (2004) 117 699 711 10.1016/j.cell.2004.05.018 15186772 

  6. 6 Tonks N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell. Biol. (2006) 7 833 846 10.1038/nrm2039 17057753 

  7. 7 Cesareni G. Perfetto L. Castagnoli L. Sacco F. The human phosphatase interactome: An intricate family portrait. Febs Lett. (2012) 586 2732 2739 10.1016/j.febslet.2012.05.008 22626554 

  8. 8 Almo S. C. Bonanno J. B. Sauder J. M. Emtage S. Teresa P. Dilorenzo T. P. VMalashkevich V. Wasserman S. R., S. Swaminathan S. Eswaramoorthy S. Agarwal R. Kumaran D. Madegowda M. Ragumani S. Patskovsky Y. Alvarado J., A. Ramagopal U. A. Faber-Barata J. Chance M. R. Sali A. Andras Fiser A. Zhang Lawrence D. S. Burley S. K. Structural genomics of protein phosphatases J. Struct. Funct. Genomics (2007) 8 121 140 10.1007/s10969-007-9036-1 18058037 

  9. 9 Barford D. Das A. K. Egloff M.-P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. (1998) 27 133 164 10.1146/annurev.biophys.27.1.133 9646865 

  10. 10 Zhang Z.-Y. Protein tyrosine phosphatases: structure and function, substrate specificity and inhibitor development. Annu. Rev. Pharmacol. Toxicol. (2002) 42 209 234 10.1146/annurev.pharmtox.42.083001.144616 11807171 

  11. 11 Rayapureddi J. P. Kattamuri C. Steinmetz B. D. Frankfort B. J. Ostrin E. J. Mardon G. Hedge R. S. Eyes absent represents a class of protein tyrosine phosphatases. Nature (2003) 426 295 298 10.1038/nature02093 14628052 

  12. 12 Li X. Oghi K. A. Zhang J. Krones A. Bush K. T. Glass C. K. Nigam S. K. Aggarwal A. K. Maas R. Rose D. W. Rosenfeld M. G. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature (2003) 426 247 254 10.1038/nature02083 14628042 

  13. 13 Tootle T. L. Silver S. J. Davies E. L. Newman V. Latek R. R. Mills I. A. Selengut J. D. Parlikar B. E. W. Rebay I. The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature (2003) 426 299 302 10.1038/nature02097 14628053 

  14. 14 Anderson J. N. Mortensen O. H. Peters G. H. Drake P. G. Iversen L. F. Olsen O. H. Jansen P. G. anderen H. S. Tonks N. K. Møller N. P. H. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. (2001) 21 7117 7136 10.1128/MCB.21.21.7117-7136.2001 11585896 

  15. 15 Barford D. Flint A. J. Tonks N. K. Crystal structure of human protein tyrosine phosphatase 1B. Science (1994) 263 1397 1404 10.1126/science.8128219 8128219 

  16. 16 Jia Z. Barford D. Flint A. J. Tonks N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science (1995) 268 1754 1758 10.1126/science.7540771 7540771 

  17. 17 Zhang Z. Y. Dixon J. E. Active site labelling of the Yersinia protein tyrosine phosphatase: the determination of the pKa of the active site cysteine and the function of the conserved histidine 402. Biochemistry (1993) 32 9340 9345 10.1021/bi00087a012 8369304 

  18. 18 Nam H.-J. Poy F. Krueger N. X. Saito H. Frederick C. A. Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell (1999) 97 449 457 10.1016/S0092-8674(00)80755-2 10338209 

  19. 19 Jiang G. den Hertog J. Su J. Noel J. Sap J. Hunter T. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-α. Science (1999) 401 606 610 

  20. 20 Bilwes A. M. den Hertog J. Hunter T. Noel J. P. Structural basis for inhibition of receptor protein-tyrosine phosphatase-a by dimerization. Nature (1996) 382 555 559 10.1038/382555a0 8700232 

  21. 21 Groen A. Lemeer S. van der Wijk T. Overvoorde J. Heck A. J. R. Ostman A. Barford D. Slijper M. den Hertog J. Differential oxidation of protein-tyrosine phosphatases. J. Biol. Chem. (2005) 280 10298 10304 10.1074/jbc.M412424200 15623519 

  22. 22 Barr A. J. Ugochukwu E. Lee W. H. King O. N. F. Filippakopoulos P. Alfano I. Savitsky P. Burgess-Brown N. A. Müller S. Knapp S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell (2009) 136 352 363 10.1016/j.cell.2008.11.038 19167335 

  23. 23 Yuvaniyama J. Denu J. M. Dixon J. E. Saper M. A. Crystal structure of the dual specificity protein phosphatase VHR. Science (1996) 272 1328 1331 10.1126/science.272.5266.1328 8650541 

  24. 24 Jung S.-K. Jeong D. G. Yoon T.-S. Kim J. H. Ryu S. E. Kim S. J. Crystal Structure of human slingshot phosphatase 2. Proteins (2007) 68 408 412 10.1002/prot.21399 17427953 

  25. 25 Kim S. J. Jeong D. G. Jeong S. K. Yoon T. S. Ryu S. E. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Proteins (2007) 66 239 245 10.1002/prot.21197 17044055 

  26. 26 Loutos G. T. Tropea J. E. Waugh D. S. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution. Acta. Crysallogr. D67 471 479 

  27. 27 Jeong D. G. Cho Y. H. Yoon T.-S. Kim J. H. Son J. H. Ryu S. E. Kim S. J. Structure of human Dsp18, a member of the dual-specificity protein tyrosine phosphatase family. Acta Crysallogr. (2006) D62 582 588 

  28. 28 Yoon T. S. Jeong D. G. Kim J. H. Cho Y. H. Son J. H. Ryu S. E. Kim S. J. Crystal structure of the catalytic domain of human VHY, a dual specificity protein phosphatase. Proteins (2005) 61 694 697 10.1002/prot.20642 16170801 

  29. 29 Wiesmann C. Barr K. H. Kung J. Zhu J. Erlanson D. A. Shen W. Fahr B. J. Zhong M. Randal M. McDowell R. S. Hansen S. K. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Str. Mol. Biol. (2004) 11 730 737 10.1038/nsmb803 

  30. 30 Zhang M. Van Etten R. L. Stauffacher C. V. Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2 Å resolution. Biochemisty (1994) 33 11097 11105 10.1021/bi00203a006 

  31. 31 Farooq A. Chaturvedi G. Mujtaba S. Plotnikova O. Zeng L. Dhalluin C. Ashton R. Zhou M.-M. Solution structure of Erk2 binding domain of MAPK phosphatase MKP3. Mol. Cell (2001) 7 387 399 10.1016/S1097-2765(01)00186-1 11239467 

  32. 32 Farooq A. Plotnikova O. Chaturvedi G. Yan S. Zeng L. Zhang Q. Zhou M. M. Solution structure of the MAPK phosphatase PAC1 catalytic domain. Structure (2003) 11 155 164 10.1016/S0969-2126(02)00943-7 12575935 

  33. 33 Jeong D. G. Yoon T. S. Jung S.-K. Park B. C. Park H. S. Ryu S. E. Kim S. J. Exploring binding sites other than catalytic core in the crystal structure of catalytic domain of MKP-4. Acta Crystallogr. (2011) D67 25 31 

  34. 34 Camps M. Nichols A. Gillieron C. Antonsson B. Muda M. Chabert C. Boschert U. Arkinstall S. Catalytic activation of the phosphatase MKP3 by ERK2 mitogen-activated protein kinase. Science (1998) 280 1262 1265 10.1126/science.280.5367.1262 9596579 

  35. 35 Jeong D. G. Yoon T.-S. Kim J. H. Shim M. Y. Jung S.-K. Son J. H. Ryu S. E. Kim S. J. Crystal structure of the catalytic domain of human MAP Kinase phosphatase 5: structural insight into constitutively active phosphatase. J. Mol. Biol. (2006) 360 946 955 10.1016/j.jmb.2006.05.059 16806267 

  36. 36 Jeong D. G. Cho Y. H. Yoon T.-S. Kim J. H. Ryu S. E. Kim S. J. Crystal structure of the catalytic domain of human dusp5, a dual specificity MAP Kinase protein phosphatase. Proteins (2007) 66 253 258 10.1002/prot.21224 17078075 

  37. 37 Jeong D. G. Jung S.-K. Yoon T.-S. Woo E.-J. Kim J. H. Park B. C. Ryu S. E. Kim S. J. Crystal structure of the catalytic domain of human MKP-2 reveals a 24-mer assembly. Proteins (2009) 76 763 767 10.1002/prot.22423 19415758 

  38. 38 Saha S. Bardelli A. Buckhaults P. Velculescu V. E. Rago C. St Croix B. Romans K. E. Choti M. A. Lengauer C. Kinzler K. W. Vogelstein B. A phosphatase associated with metastasis of colorectal cancer. Science (2001) 284 1343 1346 10.1126/science.1065817 11598267 

  39. 39 Zeng Q. Dong J. M. Guo K. Li J. Tan H. X. Koh V. Pallen C. J. Manser E. Hong W. PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res. (2003) 63 2716 2722 12782572 

  40. 40 Kozlov G. Cheng J. Ziomek E. Banvile D. Gehring K. Ekiel I. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J. Biol. Chem. (2004) 279 11882 11889 10.1074/jbc.M312905200 14704153 

  41. 41 Jeong D. G. Kim S. J. Kim J. H. Son J. H. Park M. R. Lim S. M. Yoon T.-S. Ryu S. E. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. J. Mol. Biol. (2005) 345 401 413 10.1016/j.jmb.2004.10.061 15571731 

  42. 42 Kim K.-A. Song J.-S. Jee J. Sheen M. R. Lee C. Lee T. G. Ro S. Cheong C. Structure of human PRL-3, the phosphatase associated cancer metastasis. FEBS Lett. (2004) 565 181 187 10.1016/j.febslet.2004.03.062 15135076 

  43. 43 Sun J.-P. Wang W.-Q. Yang H. Liu S. Liang F. Fedorov A. A. Almo S. C. Zhang Z.-Y. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation and tumor invasion. Biochemistry (2005) 44 12009 12021 10.1021/bi0509191 16142898 

  44. 44 Denu J. M. Lohse D. L. Vijayalakshmi J. Saper M. A. Dixon J. E. Visualization of intermediate and transition-state structures in protein tyrosine phosphatase catalysis. Proc. Natl. Acad. Sci. U.S.A. (1996) 93 2493 2498 10.1073/pnas.93.6.2493 8637902 

  45. 45 Song H. Hanlon N. Brown N. R. Noble M. E. M. Johnson L. N. Barford D. Phosphoprotein- protein interactions revealed by the crystal structure of kinase- associated phosphatase in complex with phosphoCDK2. Mol. Cell (2001) 7 615 626 10.1016/S1097-2765(01)00208-8 11463386 

  46. 46 Li D. M. Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induce G1 cell cycle arrest in human glioblastoma cells. Proc. Natl. Acad. Sci. U.S.A. (1998) 95 15406 15411 10.1073/pnas.95.26.15406 9860981 

  47. 47 Kwon I.-S. Lee K.-H. Choi J. W. Ahn J.-Y. PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus. BMB Rep. (2010) 43 127 132 10.5483/BMBRep.2010.43.2.127 20193132 

  48. 48 Lee J.-O. Yang H. Georgescu M.-M. Cristofano A. D. Maehama T. Shi Y. Dixon J. E. Pandolfi P. Pavletich N. P. Crystal structure of the PTEN tumer suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell (1999) 99 323 334 10.1016/S0092-8674(00)81663-3 10555148 

  49. 49 Begley M. J. Taylor G. S. Kim S.-A. Veine D. M. Dixon J. E. Stuckey J. A. Crystal structure of a phophoinositide phosphatase, MTMR2: insights into myotubular myopathy and charcot-marie-tooth syndrome. Mol. Cell (2003) 12 1391 1402 10.1016/S1097-2765(03)00486-6 14690594 

  50. 50 Begley M. J. Taylor G. S. Brock M. A. Ghosh P. Woods V. L. Dixon J. E. Molecular basis for substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase. Proc. Natl. Acad. Sci. U.S.A. (2006) 103 927 932 10.1073/pnas.0510006103 16410353 

  51. 51 Fauman E. B. Cogswell J. P. Lovejoy B. Rocque W. J. Holmes W. Montana V. G. Piwnica-Worms H. Rink M. J. Saper M. A. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell (1998) 93 617 625 10.1016/S0092-8674(00)81190-3 9604936 

  52. 52 McCain D. F. Catrina I. E. Hengge A. C. Zhang Z.-Y. The catalytic mechanism of Cdc25A phosphatase. J. Biol. Chem. (2002) 277 11190 11200 10.1074/jbc.M109636200 11805096 

  53. 53 Krishinan N. Jeong D. G. Jung S.-K. Ryu S. E. Xiao A. Allis C. D. Kim S. J. Tonks N. K. Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase Eyes Absent. J. Biol. Chem. (2009) 284 16066 16070 10.1074/jbc.C900032200 19351884 

  54. 54 Jung S.-K. Jeong D. G. Chung S. J. Kim J. H. Park B. C. Tonks N. K. Ryu S. E. Kim S. J. Crystal structure of ED-eya2: insight into dual roles as a protein tyrosine phosphatase and a transcription factor. FASEB J. (2010) 24 560 569 10.1096/fj.09-143891 19858093 

  55. 55 Kim D.-H. Sim T. Chemical kinomics: a powerful strategy for target deconvolution. BMB Rep. (2010) 43 711 719 10.5483/BMBRep.2010.43.11.711 21110913 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로